scholarly journals Estimation of Wave Period from Pitch and Roll of a Lidar Buoy

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1310
Author(s):  
Andreu Salcedo-Bosch ◽  
Francesc Rocadenbosch ◽  
Miguel A. Gutiérrez-Antuñano ◽  
Jordi Tiana-Alsina

This work proposes a new wave-period estimation (L-dB) method based on the power-spectral-density (PSD) estimation of pitch and roll motional time series of a Doppler wind lidar buoy under the assumption of small angles (±22 deg) and slow yaw drifts (1 min), and the neglection of translational motion. We revisit the buoy’s simplified two-degrees-of-freedom (2-DoF) motional model and formulate the PSD associated with the eigenaxis tilt of the lidar buoy, which was modelled as a complex-number random process. From this, we present the L-dB method, which estimates the wave period as the average wavelength associated to the cutoff frequency span at which the spectral components drop off L decibels from the peak level. In the framework of the IJmuiden campaign (North Sea, 29 March–17 June 2015), the L-dB method is compared in reference to most common oceanographic wave-period estimation methods by using a TriaxysTM buoy. Parametric analysis showed good agreement (correlation coefficient, ρ = 0.86, root-mean-square error (RMSE) = 0.46 s, and mean difference, MD = 0.02 s) between the proposed L-dB method and the oceanographic zero-crossing method when the threshold L was set at 8 dB.

2018 ◽  
Vol 8 (11) ◽  
pp. 2232 ◽  
Author(s):  
Chuanchen Bao ◽  
Qibo Feng ◽  
Jiakun Li

Error measurement of a rotary axis is the key to error compensation and to improving motion accuracy. However, only a few instruments can measure all the motion errors of a rotary axis. In this paper, a device based on laser collimation and laser interferometry was introduced for simultaneous measurement of all six degrees-of-freedom motion errors of a rotary axis. Synchronous rotation of the target and reference rotary axes was achieved by developing a proportional–integral–derivative algorithm. An error model for the measuring device was established using a homogeneous transformation matrix. The influences of installation errors, manufacturing errors, and error crosstalk were studied in detail, and compensation methods for them were proposed. After compensation, the repeatability of axial and radial motion errors was significantly improved. The repeatability values of angular positioning error and of tilt motion error around the y axis and x axis were 28.0″, 2.8″, and 3.9″. The repeatability values of translational motion errors were less than 2.8 μm. The comparison experiments show that the comparison errors of angular positioning error and tilt motion error around the y axis were 2.3″ and 2.9″, respectively. These results demonstrate the effectiveness of our method and the error compensation model.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mozamel Musa Saeed ◽  
Mohammed Alsharidah

AbstractBoth software-defined networking and big data have gained approval and preferences from both industry and academia. These two important realms have conventionally been addressed independently in wireless cellular networks. The discussion taken into consideration in this study was to analyze the wireless cellular technologies with the contrast of efficient and enhanced spectral densities at a reduced cost. To accomplish the goal of this study, Welch's method has been used as the core subject. With the aid of previous research and classical techniques, this study has identified that the spectral densities can be enhanced at reduced costs with the help of the power spectral estimation methods. The Welch method gives the result on power spectrum estimation. By reducing the effect of noise, the Welch method is used to calculate the power spectral density of a signal. When data length is increased, Welch's method is considered the best as a conclusion to this paper because excellent results are yielded by it in the area of power spectral density estimation.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


1975 ◽  
Vol 97 (3) ◽  
pp. 957-964 ◽  
Author(s):  
Neil K. Cooperrider

This paper discusses the random response of a seven degree of freedom, passenger truck model to lateral rail irregularities. Power spectral densities and root mean square levels of component displacements and contact forces are reported. The truck model used in the study allows lateral and yaw degrees of freedom for each wheelset, and lateral, yaw and roll freedoms for the truck frame. Linear creep relations are utilized for the rail-wheel contact forces. The lateral rail irregularities enter the analysis through the creep expressions. The results described in the paper were obtained using frequency domain techniques to solve the equations of motion. The reported results demonstrate that the guidance force needed when traveling over irregular rail at high speed utilizes a significant portion of the total available tangential force between wheel and rail.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelias Oliveira ◽  
Alison de Oliveira Moraes ◽  
Emanoel Costa ◽  
Marcio Tadeu de Assis Honorato Muella ◽  
Eurico Rodrigues de Paula ◽  
...  

Theα-μmodel has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided byα-μmodel in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on theα-μmodel is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S), Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.


Stats ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 330-342
Author(s):  
Wolf-Dieter Richter

We prove that the Behrens–Fisher statistic follows a Student bridge distribution, the mixing coefficient of which depends on the two sample variances only through their ratio. To this end, it is first shown that a weighted sum of two independent normalized chi-square distributed random variables is chi-square bridge distributed, and secondly that the Behrens–Fisher statistic is based on such a variable and a standard normally distributed one that is independent of the former. In case of a known variance ratio, exact standard statistical testing and confidence estimation methods apply without the need for any additional approximations. In addition, a three pillar bridges explanation is given for the choice of degrees of freedom in Welch’s approximation to the exact distribution of the Behrens–Fisher statistic.


2014 ◽  
Vol 614 ◽  
pp. 440-443 ◽  
Author(s):  
Wen Jun Su ◽  
Hai Tao Chen

Traditional estimation methods have poor performance for long-term data forecast. Using Wiener model to estimate, power spectral density of the input signal, and cross-spectral density of the input and output signals are needed, that are difficult to obtain. And the large amount of calculation is needed using Wiener model. Using AR model and Kalman model, estimated results tend to mean of the training set while the estimated distance increases. For these cases, a new algorithm for long-term estimation based on AR model, named sampling AR model, is presented. Grouping the training set and using a different group of the training set to estimate each value. Sampling AR model improves the accuracy of long-term estimation.


1993 ◽  
Vol 07 (13n14) ◽  
pp. 857-863 ◽  
Author(s):  
HEINO KAFEMANN ◽  
HERBERT M. URBASSEK

By molecular dynamics, the sputtering of a condensed N 2 sample due to 100 eV N atom bombardment is studied. The features observed in general parallel those of previous studies of Ar sputtering. Time- and space-resolved measurements give novel information on the original position of sputtered molecules and the time dependence of their energy distribution. Rotational and vibrational degrees of freedom are underpopulated with respect to center-of-mass translational motion.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Guangwei Yang ◽  
Jianjun Du ◽  
Weiping Ge ◽  
Tun Liu ◽  
Xiaowei Yang

The traditional eight-coefficient bearing model only considers the translational motion of the bearings and neglects the tilting motion and coupling effects between them. In this paper, the dynamic characteristics of the spiral-grooved opposed-hemisphere gas bearing considering five degrees-of-freedom are studied, and 50 dynamic coefficients including the translational, tilting, and coupling components are completely calculated. The Reynolds equations and their perturbed equations are solved by the finite element method to obtain the dynamic stiffness and damping coefficients. The effects of the tilting motion on the dynamic coefficients and response are analyzed, respectively. The results show that the coupling coefficients between the translational and tilting motions, which have been neglected in most previous studies, are significant at large eccentricity ratio. But these coupling coefficients have little effect on the dynamic response. On the other hand, the influences of the tilting motion on the synchronous response and natural frequency are remarkable and will decrease the stability of the rotor bearing system.


1998 ◽  
Vol 124 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Izhak Bucher

This paper deals with the optimization of vibrating structures as a mean for minimizing unwanted vibration. Presented in this work is a method for automatic determination of a set of preselected design parameters affecting the geometrical layout or shape of the structure. The parameters are selected to minimize the dynamic response to external forcing or base motion. The presented method adjusts the structural parameters by solving an optimization problem in which the constraints are dictated by engineering considerations. Several constraints are defined so that the static deflection, the stress levels and the total weight of the structure are kept within bounds. The dynamic loading acting upon the structure is described in this work by its power spectral density, with this representation the structure can be tailored to specific operating conditions. The uncertain nature of the excitation is overcome by combining all possible spectra into one PSD encompassing all possible loading patterns. An important feature of the presented method is its numerical efficiency. This feature is essential for any reasonably sized problem as such problems are usually described by thousands of degrees of freedom arising from a finite-element idealization of the structure. In this paper, efficient, closed form expressions, for the cost function and its gradients are derived. Those are computed with a partial set of eigenvectors and eigenvalues thus increasing the efficiency further. Several numerical examples are presented where both shape optimization and the selection of discrete components are illustrated.


Sign in / Sign up

Export Citation Format

Share Document