scholarly journals Gamma-Ray Sensor Using YAlO3(Ce) Single Crystal and CNT/PEEK with High Sensitivity and Stability under Harsh Underwater Conditions

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1606
Author(s):  
Chanki Lee ◽  
Hee Reyoung Kim

A new gamma-ray sensor, which could be employed in harsh underwater conditions, was developed using YAlO3(Ce) single crystal and carbon nanotube reinforced polyetheretherketone (CNT/PEEK). The sensor is compact, highly sensitive and stable, by providing real-time gross counts and an accumulated spectrum for fresh, saline, or contaminated water conditions. The sensor was tested in a water tank for quantification of the limit of detections. The Φ51 × 51 mm2 YAlO3(Ce) crystal exhibits a nearly perfect proportionality with a correlation of over 0.999 in terms of light yield per energy and possesses a high energy resolution. The chemically stable CNT/PEEK window material further enhances the detection efficiency by minimizing the background counts from penetrating gamma-rays. Data timeliness was obtained for regulation-based minimum detectable activity targets within 300 s. For a source-detector distance of up to 300 mm in water, the gross counts demonstrate the existence of radionuclides (Cs-137 and Co-60), owing to their higher efficiency (max. ~15 times) than those of the photopeak counts. Such differences between efficiency values are more likely in water than in air because of the high density of water, resulting in an increased build-up of scattered photons. The proposed sensor is suitable for autonomous underwater systems.

2009 ◽  
Vol 1164 ◽  
Author(s):  
Nerine Cherepy ◽  
S A. Payne ◽  
Rastgo Hawrami ◽  
A Burger ◽  
Lynn Boatner ◽  
...  

AbstractEuropium-doped strontium iodide scintillators offer a light yield exceeding 100,000 photons/MeV and excellent light yield proportionality, while at the same time, SrI2 is readily grown in single crystal form. Thus far, our collaboration has demonstrated an energy resolution with strontium iodide of 2.6% at 662 keV and 7.6% at 60 keV, and we have grown single crystals surpassing 30 cm3 in size (with lower resolution). Our analysis indicates that SrI2(Eu) has the potential to offer 2% energy resolution at 662 keV with optimized material, optics, and read-out. In particular, improvements in feedstock purity may result in crystal structural and chemical homogeneity, leading to improved light yield uniformity throughout the crystal volume, and consequently, better energy resolution. Uniform, efficient light collection and detection, is also required to achieve the best energy resolution with a SrI2(Eu) scintillator device.


2017 ◽  
Vol 866 ◽  
pp. 329-332
Author(s):  
Akapong Phunpueok ◽  
Voranuch Thongpool ◽  
Weerapong Chewpraditkul

Nowadays, single crystal scintillators play an key role in the scientific researches, high-energy physics and modern medical imaging. In this research, we studied the scintillation response of polished yttrium oxyorthosilicate with Ce-doped (Y2SiO5:Ce, YSO(Ce)) crystals grown by the Czochralski method. The nominal Ce3+ ion is about 0.5% for tested crystals. Energy resolution and photon yield of the scintillator are read out by the photomultiplier tube (XP5200B PMT) under excitation with gamma-rays. The polished YSO:Ce samples (5x5x1 mm3 and 5x5x3 mm3) was tested at room temperature. The 1 mm thick sample shows the better energy resolution than the 3 mm thick crystal. The light yield dependences on the height of crystal were evaluated under excitation with 662 keV gamma ray energy and the intrinsic light yield and loss parameter were also determined.


2017 ◽  
Author(s):  
Juan C. Nino ◽  
James Baciak ◽  
Paul Johns ◽  
Soumitra Sulekar ◽  
James Totten ◽  
...  

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 591-596 ◽  
Author(s):  
Aneta Malinowska ◽  
Marian Jaskóła ◽  
Andrzej Korman ◽  
Adam Szydłowski ◽  
Karol Malinowski ◽  
...  

Abstract To use effectively any radiation detector in high-temperature plasma experiments, it must have a lot of benefits and fulfill a number of requirements. The most important are: a high energy resolution, linearity over a wide range of recorded particle energy, high detection efficiency for these particles, a long lifetime and resistance to harsh conditions existing in plasma experiments and so on. Solid-state nuclear track detectors have been used in our laboratory in plasma experiments for many years, but recently we have made an attempt to use these detectors in spectroscopic measurements performed on some plasma facilities. This paper presents a method that we used to elaborate etched track diameters to evaluate the incident projectile energy magnitude. The method is based on the data obtained from a semiautomatic track scanning system that selects tracks according to two parameters, track diameter and its mean gray level.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
He Li-xia ◽  
Hao Xiao-yong ◽  
He Gao-kui

Thallium bromide (TlBr) is a compound semiconductor material, which can be used for X-ray and gamma-ray detectors and can be used at room temperature. It has excellent physical properties, high atomic number and density, wide bandgap (B = 2.68 eV), and low ionization energy. Compared with other X-ray and gamma-ray detection materials, TlBr devices have high detection efficiency and excellent energy resolution performance. So TlBr is suitable for housing in small tubes or shells, and it can be widely used in nuclear material measurement, safeguards verification, national security, space high-energy physics research, and other fields. Based on the fabrication of TlBr prototype detector, this paper focuses on the device fabrication and signal acquisition technology. Gamma-ray spectrum measurements and performance tests are carried out with AM-241 radioactive source. The results show that the special photoelectric peak of 59.5 keV is clearly visible, and the optimal resolution is 4.15 keV (7%).


2014 ◽  
Vol 03 (02) ◽  
pp. 1440008 ◽  
Author(s):  
M. Beilicke ◽  
F. Kislat ◽  
A. Zajczyk ◽  
Q. Guo ◽  
R. Endsley ◽  
...  

X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, neutron stars, and gamma-ray bursts. We designed, built and tested a X-ray polarimeter, X-Calibur, to be used in the focal plane of the balloon-borne InFOCμS grazing incidence X-ray telescope. X-Calibur combines a low-Z scatterer with a Cadmium Zinc Telluride (CZT) detector assembly to measure the polarization of 20–80 keV X-rays making use of the fact that polarized photons scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of ≃80%. The X-Calibur detector assembly is completed, tested, and fully calibrated. The response to a polarized X-ray beam was measured successfully at the Cornell High Energy Synchrotron Source. This paper describes the design, calibration and performance of the X-Calibur polarimeter. In principle, a similar space-borne scattering polarimeter could operate over the broader 2–100 keV energy band.


2022 ◽  
Vol 17 (01) ◽  
pp. C01001
Author(s):  
F. Ahmadov ◽  
G. Ahmadov ◽  
R. Akbarov ◽  
A. Aktag ◽  
E. Budak ◽  
...  

Abstract In the presented work, the parameters of a new MAPD-3NM-II photodiode with buried pixel structure manufactured in cooperation with Zecotek Company are investigated. The photon detection efficiency, gain, capacitance and gamma-ray detection performance of photodiodes are studied. The SPECTRIG MAPD is used to measure the parameters of the MAPD-3NM-II and scintillation detector based on it. The obtained results show that the newly developed MAPD-3NM-II photodiode outperforms its counterparts in most parameters and it can be successfully applied in space application, medicine, high-energy physics and security.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Noritake Isomura ◽  
Yasuji Kimoto

The identification of the incorporated site of magnesium (Mg) and hydrogen (H) required for p-type formation in gallium nitride (GaN) power devices has been demonstrated by X-ray absorption spectroscopy (XAS). In this study, the fluorescence line of Mg with 3 × 1019 atoms cm−3 was successfully separated from that of Ga using a superconducting tunnel junction array detector with high sensitivity and high energy resolution, and consequently the Mg K-edge XAS spectra of such dilute samples were obtained. The site of Mg atoms incorporated into the GaN lattice was identified as the Ga substitutional site by comparing the experimental XAS spectrum with the simulated spectra calculated by density functional theory. In addition, the presence or absence of H around Mg can be determined through distinctive characteristics expected from the spectrum simulations.


Sign in / Sign up

Export Citation Format

Share Document