scholarly journals Multi-Layer and Conformally Integrated Structurally Embedded Vascular Antenna (SEVA) Arrays

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1764
Author(s):  
Amrita Bal ◽  
Jeffery W. Baur ◽  
Darren J. Hartl ◽  
Geoffrey J. Frank ◽  
Thao Gibson ◽  
...  

This work presents the design and fabrication of two multi-element structurally embedded vascular antennas (SEVAs). These are achieved through advances in additively manufactured sacrificial materials and demonstrate the ability to embed vascular microchannels in both planar and complex-curved epoxy-filled quartz fiber structural composite panels. Frequency-reconfigurable antennas are formed by these structures through the pressure-driven transport of liquid metal through the embedded microchannels. The planar multi-layer topology examines the ability to fabricate two co-located radiating structures separated by a single ply of quartz fabric within the composite layup. The multi-element linear array topology composed of microchannels embedded on to a single-layer are used to demonstrate the ability to conformally-integrate these channels into a complex curved surface that mimics an array of antennas on the leading edge of an Unmanned Aerial Vehicle (UAV). A parallel-strip antipodal dipole feed structure provides excitation and serves as the interface for fluid displacement within the microchannels to facilitate reconfiguration. The nominal design of the SEVAs achieve over a decade of frequency reconfiguration with respect to the fundamental dipole mode of the antenna. Experimental and predicted results demonstrate the operation for canonical states of the antennas. Additional results for the array topology demonstrate beam steering and contiguous operation of interconnected elements in the multi-element structure.

2007 ◽  
Vol 33 (1) ◽  
pp. 57-66 ◽  
Author(s):  
M. Rao ◽  
Q. Chen ◽  
H. Shi ◽  
T. Varghese ◽  
E.L. Madsen ◽  
...  

Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
Taimur Ali Shams ◽  
Syed Irtiza Ali Shah ◽  
Ali Javed ◽  
Syed Hossein Raza Hamdani

Airfoil selection procedure, wind tunnel testing and an implementation of 6-DOF model on flying wing micro aerial vehicle (FWMAV) has been proposed in this research. The selection procedure of airfoil has been developed by considering parameters related to aerodynamic efficiency and flight stability. Airfoil aerodynamic parameters have been calculated using a potential flow solver for ten candidate airfoils. Eppler-387 proved to be the most efficient reflexed airfoil and therefore was selected for fabrication and further flight testing of vehicle. Elevon control surfaces have been designed and evaluated for longitudinal and lateral control. The vehicle was fabricated using hot wire machine with EPP styrofoam of density 50 Kg/ m 3 . Static aerodynamic coefficients were evaluated using wind tunnel tests conducted at cruise velocity of 20 m/s for varying angles of attack. Rate derivatives and elevon control derivatives have also been calculated. Equations of motion for FWMAV have been written in a body axis system yielding a 6-DOF model. It was found during flight tests that vehicle conducted coordinated turns with no appreciable adverse yaw. Since FWMAV was not designed with a vertical stabilizer and rudder control surface, directional stability was therefore augmented through winglets and high wing leading edge sweep. Major problems encountered during flight tests were related to left rolling tendency. The left roll tendency was found inherent to clockwise rotating propeller as ‘P’ factor, gyroscopic precession, torque effect and spiraling slipstream. To achieve successful flights, many actions were required including removal of excessive play from elevon control rods, active actuation of control surfaces, enhanced launch speed during take off, and increased throttle control during initial phase of flight. FWMAV flew many successful stable flights in which intended mission profile was accomplished, thereby validating the proposed airfoil selection procedure, modeling technique and proposed design.


Author(s):  
Jinwoo Park ◽  
Byunggil Yu ◽  
Euntae Jung ◽  
Ilhyun Park ◽  
Jongwoo Seo ◽  
...  

In this paper, an array antenna for LOS datalink for mounting UAV(Unmanned Aerial Vehicle) of low-probability of intercept is presented. For low RCS, radome was designed by conformal form, and other components were inserted into the UAV. The antenna of the transmitter and receiver are each composed of 12×12 array antennas, and include a beam steering function by controlling the phase of the unit element for the Uni-directional pattern and the Bi-directional pattern. As a result of the measurement of the manufactured antenna, it was confirmed that all the required specifications were met, and the installing possibility of the UAV platform on low-probability of intercept in the future was confirmed.


2013 ◽  
Vol 303-306 ◽  
pp. 533-537 ◽  
Author(s):  
Ya Jie Sun ◽  
Yong Hong Zhang ◽  
Shen Fang Yuan

Phased array theory was utilized in the unmanned aerial vehicle (UAV) wing box to identify the screw loosening in the structure. Phased array theory could well control the beam steering of Lamb wave to the desired directions to scan the structure for damage recognition. The time delay in special direction was calculated for the beam steering of the signal. The recognition result was shown on a mapped image.


Sign in / Sign up

Export Citation Format

Share Document