scholarly journals Investigating Master–Slave Architecture for Underwater Wireless Sensor Network

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3000
Author(s):  
Sadeeq Jan ◽  
Eiad Yafi ◽  
Abdul Hafeez ◽  
Hamza Waheed Khatana ◽  
Sajid Hussain ◽  
...  

A significant increase has been observed in the use of Underwater Wireless Sensor Networks (UWSNs) over the last few decades. However, there exist several associated challenges with UWSNs, mainly due to the nodes’ mobility, increased propagation delay, limited bandwidth, packet duplication, void holes, and Doppler/multi-path effects. To address these challenges, we propose a protocol named “An Efficient Routing Protocol based on Master–Slave Architecture for Underwater Wireless Sensor Network (ERPMSA-UWSN)” that significantly contributes to optimizing energy consumption and data packet’s long-term survival. We adopt an innovative approach based on the master–slave architecture, which results in limiting the forwarders of the data packet by restricting the transmission through master nodes only. In this protocol, we suppress nodes from data packet reception except the master nodes. We perform extensive simulation and demonstrate that our proposed protocol is delay-tolerant and energy-efficient. We achieve an improvement of 13% on energy tax and 4.8% on Packet Delivery Ratio (PDR), over the state-of-the-art protocol.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


2018 ◽  
Vol 7 (3) ◽  
pp. 1956
Author(s):  
A Felix Arokya Jose ◽  
C Anand Deva Durai ◽  
S John Livingston

Wireless Sensor Network (WSN) has an enormous scope of utilizations in detecting different parameters such as temperature, pressure, sound, pollution, etc. The sensed data in each sensor node are a valuable one. To communicate the information to the base station for further processing, a lot of strategies are available. Each sensor senses the data in different sampling rate depending upon the sudden raise in the sensing parameters. Data communication to the base station is very critical due to the dynamicity of the environment during the stipulated time.The sensed data should reach the base station before the data becomes invalid due to the violation of the deadline. In order to avoid deadline violation so that the sensed data becomes useless, this paper proposing a novel data collection algorithm based on the popular Earliest Deadline First (EDF) scheduling algorithm. The various simulation parameters are taken into account to verify the performance of the proposed method and the result shows that it achieves high throughput, low delay, high Packet Delivery Ratio (PDR) and low energy consumption.  


2015 ◽  
Vol 5 (5) ◽  
pp. 655-676 ◽  
Author(s):  
Francesco Potenza ◽  
Fabio Federici ◽  
Marco Lepidi ◽  
Vincenzo Gattulli ◽  
Fabio Graziosi ◽  
...  

2013 ◽  
Vol 291-294 ◽  
pp. 2532-2536
Author(s):  
Han Hua Yang

Multi path routing protocol plays important part in the multi hop heterogeneous wireless sensor network. To get better performance, adaptive Wireless Senor Network Multi Path Routing Scheme (AMRH) is proposed, which is made up of three phrases: initial setup, route discovery and establishment, route maintenance. In the first phrase, every node gets the initial route table. In the second phrase, source node will find minimum-cost path among multiple paths. In the third phrase, route maintenance is conducted under adaptive mechanism. Simulation shows that AMRH scheme can prolong sensor network lifetime by 19.5%, increase data delivery ratio by 5.6%.


Wireless Sensor Network (WSN) is developed extremely because of their low installation cost and various applications. WSN has compact and inexpensive sensor nodes for monitoring the physical environment. WSNs are susceptible to many attacks (e.g. malicious nodes) because of its distinct characteristics. The performance of node and network is affected by the malicious nodes. Moreover, the communication among the sensor nodes also required to be secured for preventing the data from the hackers. In this paper, the architecture of the WSN is generated by using the Fuzzy-C-Means clustering (FCM). Then the detection of the malicious nodes is performed by using the Acknowledgement Scheme (AS). This AS is integrated in the Ant Colony Optimization (ACO) based routing for avoiding the malicious nodes while generating the route from the source to the Base Station (BS). Then the Hybrid Encryption Algorithm (HEA) is used for performing the secure data transmission through the network and this proposed method is named as HEA-AS. The performance of the HEA-AS method is evaluated in terms of End to End Delay (EED), network lifetime, throughput, Packet Delivery Ratio (PDR) and Packet Loss Ratio (PLR). The proposed HEA-AS method is compared with the existing method called as CTCM to evaluate the effectiveness of the HEA-AS method.


Sign in / Sign up

Export Citation Format

Share Document