scholarly journals Validity of Inertial Sensors for Assessing Balance Kinematics and Mobility during Treadmill-Based Perturbation and Dance Training

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3065
Author(s):  
Ernest Kwesi Ofori ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Inertial sensors (IS) enable the kinematic analysis of human motion with fewer logistical limitations than the silver standard optoelectronic motion capture (MOCAP) system. However, there are no data on the validity of IS for perturbation training and during the performance of dance. The aim of this present study was to determine the concurrent validity of IS in the analysis of kinematic data during slip and trip-like perturbations and during the performance of dance. Seven IS and the MOCAP system were simultaneously used to capture the reactive response and dance movements of fifteen healthy young participants (Age: 18–35 years). Bland Altman (BA) plots, root mean square errors (RMSE), Pearson’s correlation coefficients (R), and intraclass correlation coefficients (ICC) were used to compare kinematic variables of interest between the two systems for absolute equivalency and accuracy. Limits of agreements (LOA) of the BA plots ranged from −0.23 to 0.56 and −0.21 to 0.43 for slip and trip stability variables, respectively. The RMSE for slip and trip stabilities were from 0.11 to 0.20 and 0.11 to 0.16, respectively. For the joint mobility in dance, LOA varied from −6.98–18.54, while RMSE ranged from 1.90 to 13.06. Comparison of IS and optoelectronic MOCAP system for reactive balance and body segmental kinematics revealed that R varied from 0.59 to 0.81 and from 0.47 to 0.85 while ICC was from 0.50 to 0.72 and 0.45 to 0.84 respectively for slip–trip perturbations and dance. Results of moderate to high concurrent validity of IS and MOCAP systems. These results were consistent with results from similar studies. This suggests that IS are valid tools to quantitatively analyze reactive balance and mobility kinematics during slip–trip perturbation and the performance of dance at any location outside, including the laboratory, clinical and home settings.

2011 ◽  
Vol 8 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Au Bich Thuy ◽  
Leigh Blizzard ◽  
Michael Schmidt ◽  
Costan Magnussen ◽  
Emily Hansen ◽  
...  

Background:Pedometer measurement of physical activity (PA) has been shown to be reliable and valid in industrialized populations, but its applicability in economically developing Vietnam remains untested. This study assessed the feasibility, stability and validity of pedometer estimates of PA in Vietnam.Methods:250 adults from a population-based survey were randomly selected to wear Yamax pedometers and record activities for 7 consecutive days. Stability and concurrent validity were assessed using intraclass correlation coefficients (ICC) and Spearman correlation coefficients.Results:Overall, 97.6% of participants provided at least 1 day of usable recordings, and 76.2% wore pedometers for all 7 days. Only 5.2% of the sample participants were involved in work activities not measurable by pedometer. The number of steps increased with hours of wear. There was no significant difference between weekday and weekend in number of steps, and at least 3 days of recordings were required (ICC of the 3 days of recordings: men 0.96, women 0.97). Steps per hour were moderately correlated (men r = .42, women r = .26) with record estimates of total PA.Conclusions:It is feasible to use pedometers to estimate PA in Vietnam. The measure should involve at least 3 days of recording irrespective of day of the week.


2004 ◽  
Vol 84 (10) ◽  
pp. 906-918 ◽  
Author(s):  
Diane M Wrisley ◽  
Gregory F Marchetti ◽  
Diane K Kuharsky ◽  
Susan L Whitney

Background and Purpose. The Functional Gait Assessment (FGA) is a 10-item gait assessment based on the Dynamic Gait Index. The purpose of this study was to evaluate the reliability, internal consistency, and validity of data obtained with the FGA when used with people with vestibular disorders. Subjects. Seven physical therapists from various practice settings, 3 physical therapist students, and 6 patients with vestibular disorders volunteered to participate. Methods. All raters were given 10 minutes to review the instructions, the test items, and the grading criteria for the FGA. The 10 raters concurrently rated the performance of the 6 patients on the FGA. Patients completed the FGA twice, with an hour's rest between sessions. Reliability of total FGA scores was assessed using intraclass correlation coefficients (2,1). Internal consistency of the FGA was assessed using the Cronbach alpha and confirmatory factor analysis. Concurrent validity was assessed using the correlation of the FGA scores with balance and gait measurements. Results. Intraclass correlation coefficients of .86 and .74 were found for interrater and intrarater reliability of the total FGA scores. Internal consistency of the FGA scores was .79. Spearman rank order correlation coefficients of the FGA scores with balance measurements ranged from .11 to .67. Discussion and Conclusion. The FGA demonstrates what we believe is acceptable reliability, internal consistency, and concurrent validity with other balance measures used for patients with vestibular disorders.


Author(s):  
Billy Senington ◽  
Raymond Y. Lee ◽  
Jonathan Mark Williams

AbstractThe use of inertial sensors in fast bowling analysis may offer a cheaper and portable alternative to current methodologies. However, no previous studies have assessed the validity and reliability of such methods. Therefore, this study aimed to assess the validity and reliability of collecting tibial accelerations and spinal kinematics using inertial sensors during in vivo fast bowling. Thirty-five elite male fast bowlers volunteered for this study. An accelerometer attached to the skin over the tibia was used to determine impacts and inertial sensors over the S1, L1 and T1 spinous processes used to derive the relative kinematics. These measurements were compared to optoelectronic and force plate data for validity analysis. Most acceleration and kinematics variables measured report significant correlations > 0.8 with the corresponding gold standard measurement, with intraclass correlation coefficients greater than 0.7. Low standard error of measurement and consequently small minimum detectable change (MDC) values were also observed. This study demonstrates that inertial sensors are as valid and reliable as current methods of fast bowling analysis and may provide some advantages over traditional methods. The novel metrics and methods described in this study may aid coaches and practitioners in the design and monitoring of fast bowling technique. Graphical abstract Graphical abstract illustrating the synopsis of the findings from this paper.


2014 ◽  
Vol 30 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Dylan Kobsar ◽  
Chad Olson ◽  
Raman Paranjape ◽  
John M. Barden

A single triaxial accelerometer has the ability to collect a large amount of continuous gait data to quantitatively assess the control of gait. Unfortunately, there is limited information on the validity of gait variability and fractal dynamics obtained from this device. The purpose of this study was to test the concurrent validity of the variability and fractal dynamic measures of gait provided by a triaxial accelerometer during a continuous 10 minute walk in older adults. Forty-one healthy older adults were fitted with a single triaxial accelerometer at the waist, as well as a criterion footswitch device before completing a ten minute overground walk. The concurrent validity of six outcome measures was examined using intraclass correlation coefficients (ICC) and 95% limits of agreement. All six dependent variables measured by the accelerometer displayed excellent agreement with the footswitch device. Mean parameters displayed the highest validity, followed by measures of variability and fractal dynamics in stride times and measures of variability and fractal dynamics in step times. These findings suggest that an accelerometer is a valid and unique device that has the potential to provide clinicians with valid quantitative data for assessing their clients’ gait.


2011 ◽  
Vol 46 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Stephen C. Cobb ◽  
C. Roger James ◽  
Matthew Hjertstedt ◽  
James Kruk

Abstract Context: Although abnormal foot posture long has been associated with lower extremity injury risk, the evidence is equivocal. Poor intertester reliability of traditional foot measures might contribute to the inconsistency. Objectives: To investigate the validity and reliability of a digital photographic measurement method (DPMM) technology, the reliability of DPMM-quantified foot measures, and the concurrent validity of the DPMM with clinical-measurement methods (CMMs) and to report descriptive data for DPMM measures with moderate to high intratester and intertester reliability. Design: Descriptive laboratory study. Setting: Biomechanics research laboratory. Patients or Other Participants: A total of 159 people participated in 3 groups. Twenty-eight people (11 men, 17 women; age  =  25 ± 5 years, height  =  1.71 ± 0.10 m, mass  =  77.6 ± 17.3 kg) were recruited for investigation of intratester and intertester reliability of the DPMM technology; 20 (10 men, 10 women; age  =  24 ± 2 years, height  =  1.71 ± 0.09 m, mass  =  76 ± 16 kg) for investigation of DPMM and CMM reliability and concurrent validity; and 111 (42 men, 69 women; age  =  22.8 ± 4.7 years, height  =  168.5 ± 10.4 cm, mass  =  69.8 ± 13.3 kg) for development of a descriptive data set of the DPMM foot measurements with moderate to high intratester and intertester reliabilities. Intervention(s): The dimensions of 10 model rectangles and the 28 participants' feet were measured, and DPMM foot posture was measured in the 111 participants. Two clinicians assessed the DPMM and CMM foot measures of the 20 participants. Main Outcome Measure(s): Validity and reliability were evaluated using mean absolute and percentage errors and intraclass correlation coefficients. Descriptive data were computed from the DPMM foot posture measures. Results: The DPMM technology intratester and intertester reliability intraclass correlation coefficients were 1.0 for each tester and variable. Mean absolute errors were equal to or less than 0.2 mm for the bottom and right-side variables and 0.1° for the calculated angle variable. Mean percentage errors between the DPMM and criterion reference values were equal to or less than 0.4%. Intratester and intertester reliabilities of DPMM-computed structural measures of arch and navicular indices were moderate to high (>0.78), and concurrent validity was moderate to strong. Conclusions: The DPMM is a valid and reliable clinical and research tool for quantifying foot structure. The DPMM and the descriptive data might be used to define groups in future studies in which the relationship between foot posture and function or injury risk is investigated.


2015 ◽  
Vol 95 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Stephen J. Page ◽  
Erinn Hade ◽  
Andrew Persch

Background There remains a need for a quickly administered, stroke-specific, bedside measure of active wrist and finger movement for the expanding stroke population. The wrist stability and hand mobility scales of the upper extremity Fugl-Meyer Assessment (w/h UE FM) constitute a valid, reliable measure of paretic UE impairment in patients with active wrist and finger movement. Objective The aim of this study was to determine performance on the w/h UE FM in a stable cohort of survivors of stroke with only palpable movement in their paretic wrist flexors. Design A single-center cohort study was conducted. Method Thirty-two individuals exhibiting stable, moderate upper extremity hemiparesis (15 male, 17 female; mean age=56.6 years, SD=10.1; mean time since stroke=4.6 years, SD=5.8) participated in the study, which was conducted at an outpatient rehabilitation clinic in the midwestern United States. The w/h UE FM and Action Research Arm Test (ARAT) were administered twice. Intraclass correlation coefficients (ICCs), Cronbach alpha, and ordinal alpha were computed to determine reliability, and Spearman rank correlation coefficients and Bland-Altman plots were computed to establish validity. Results Intraclass correlation coefficients for the w/h UE FM and ARAT were .95 and .99, respectively. The w/h UE FM intrarater reliability and internal consistency were greater than .80, and concurrent validity was greater than .70. This also was the first stroke rehabilitative study to apply ordinal alpha to examine internal consistency values, revealing w/h UE FM levels greater than .85. Concurrent validity findings were corroborated by Bland-Altman plots. Conclusions It appears that the w/h UE FM is a promising tool to measure distal upper extremity movement in patients with little active paretic wrist and finger movement. This finding widens the segment of patients on whom the w/h UE FM can be effectively used and addresses a gap, as commonly used measures necessitate active distal upper extremity movement.


2008 ◽  
Vol 24 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Christian Maiwald ◽  
Stefan Grau ◽  
Inga Krauss ◽  
Marlene Mauch ◽  
Detlef Axmann ◽  
...  

The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N = 95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force–time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force–time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot.


Author(s):  
Jacinta I. Foster ◽  
Katrina L. Williams ◽  
Barbra H.B. Timmer ◽  
Sandra G. Brauer

There is little evidence of the concurrent validity of commercially available wrist-worn long battery life activity monitors to measure steps in older adults at slow speeds and with real-world challenges. Forty adults aged over 60 years performed a treadmill protocol at four speeds, a 50-m indoor circuit, and a 200-m outdoor circuit with environmental challenges while wearing a Garmin Vivofit®4, the activPAL3™, and a chest-worn camera angled at the feet. The Garmin Vivofit®4 showed high intraclass correlation coefficients2,1 (.98–.99) and low absolute percentage error rates (<2%) at the fastest treadmill speeds and the outdoor circuit. Step counts were underestimated at the slowest treadmill speed and the indoor circuit. The Garmin Vivofit®4 is accurate for older adults at higher walking speeds and during outdoor walking. However, it underestimates steps at slow speeds and when walking indoors with postural transitions.


2021 ◽  
pp. 135245852110181
Author(s):  
KH Lam ◽  
P van Oirschot ◽  
B den Teuling ◽  
HE Hulst ◽  
BA de Jong ◽  
...  

Background: Early detection and monitoring of cognitive dysfunction in multiple sclerosis (MS) may be enabled with smartphone-adapted tests that allow frequent measurements in the everyday environment. Objectives: The aim of this study was to determine the reliability, construct and concurrent validity of a smartphone-adapted Symbol Digit Modalities Test (sSDMT). Methods: During a 28-day follow-up, 102 patients with MS and 24 healthy controls (HC) used the MS sherpa® app to perform the sSDMT every 3 days on their own smartphone. Patients performed the Brief International Cognitive Assessment for MS at baseline. Test–retest reliability (intraclass correlation coefficients, ICC), construct validity (group analyses between cognitively impaired (CI), cognitively preserved (CP) and HC for differences) and concurrent validity (correlation coefficients) were assessed. Results: Patients with MS and HC completed an average of 23.2 ( SD = 10.0) and 18.3 ( SD = 10.2) sSDMT, respectively. sSDMT demonstrated high test–retest reliability (ICCs > 0.8) with a smallest detectable change of 7 points. sSDMT scores were different between CI patients, CP patients and HC (all ps < 0.05). sSDMT correlated modestly with the clinical SDMT (highest r = 0.690), verbal (highest r = 0.516) and visuospatial memory (highest r = 0.599). Conclusion: Self-administered smartphone-adapted SDMT scores were reliable and different between patients who were CI, CP and HC and demonstrated concurrent validity in assessing information processing speed.


1991 ◽  
Vol 34 (5) ◽  
pp. 989-999 ◽  
Author(s):  
Stephanie Shaw ◽  
Truman E. Coggins

This study examines whether observers reliably categorize selected speech production behaviors in hearing-impaired children. A group of experienced speech-language pathologists was trained to score the elicited imitations of 5 profoundly and 5 severely hearing-impaired subjects using the Phonetic Level Evaluation (Ling, 1976). Interrater reliability was calculated using intraclass correlation coefficients. Overall, the magnitude of the coefficients was found to be considerably below what would be accepted in published behavioral research. Failure to obtain acceptably high levels of reliability suggests that the Phonetic Level Evaluation may not yet be an accurate and objective speech assessment measure for hearing-impaired children.


Sign in / Sign up

Export Citation Format

Share Document