scholarly journals A Digital Photographic Measurement Method for Quantifying Foot Posture: Validity, Reliability, and Descriptive Data

2011 ◽  
Vol 46 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Stephen C. Cobb ◽  
C. Roger James ◽  
Matthew Hjertstedt ◽  
James Kruk

Abstract Context: Although abnormal foot posture long has been associated with lower extremity injury risk, the evidence is equivocal. Poor intertester reliability of traditional foot measures might contribute to the inconsistency. Objectives: To investigate the validity and reliability of a digital photographic measurement method (DPMM) technology, the reliability of DPMM-quantified foot measures, and the concurrent validity of the DPMM with clinical-measurement methods (CMMs) and to report descriptive data for DPMM measures with moderate to high intratester and intertester reliability. Design: Descriptive laboratory study. Setting: Biomechanics research laboratory. Patients or Other Participants: A total of 159 people participated in 3 groups. Twenty-eight people (11 men, 17 women; age  =  25 ± 5 years, height  =  1.71 ± 0.10 m, mass  =  77.6 ± 17.3 kg) were recruited for investigation of intratester and intertester reliability of the DPMM technology; 20 (10 men, 10 women; age  =  24 ± 2 years, height  =  1.71 ± 0.09 m, mass  =  76 ± 16 kg) for investigation of DPMM and CMM reliability and concurrent validity; and 111 (42 men, 69 women; age  =  22.8 ± 4.7 years, height  =  168.5 ± 10.4 cm, mass  =  69.8 ± 13.3 kg) for development of a descriptive data set of the DPMM foot measurements with moderate to high intratester and intertester reliabilities. Intervention(s): The dimensions of 10 model rectangles and the 28 participants' feet were measured, and DPMM foot posture was measured in the 111 participants. Two clinicians assessed the DPMM and CMM foot measures of the 20 participants. Main Outcome Measure(s): Validity and reliability were evaluated using mean absolute and percentage errors and intraclass correlation coefficients. Descriptive data were computed from the DPMM foot posture measures. Results: The DPMM technology intratester and intertester reliability intraclass correlation coefficients were 1.0 for each tester and variable. Mean absolute errors were equal to or less than 0.2 mm for the bottom and right-side variables and 0.1° for the calculated angle variable. Mean percentage errors between the DPMM and criterion reference values were equal to or less than 0.4%. Intratester and intertester reliabilities of DPMM-computed structural measures of arch and navicular indices were moderate to high (>0.78), and concurrent validity was moderate to strong. Conclusions: The DPMM is a valid and reliable clinical and research tool for quantifying foot structure. The DPMM and the descriptive data might be used to define groups in future studies in which the relationship between foot posture and function or injury risk is investigated.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3065
Author(s):  
Ernest Kwesi Ofori ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Inertial sensors (IS) enable the kinematic analysis of human motion with fewer logistical limitations than the silver standard optoelectronic motion capture (MOCAP) system. However, there are no data on the validity of IS for perturbation training and during the performance of dance. The aim of this present study was to determine the concurrent validity of IS in the analysis of kinematic data during slip and trip-like perturbations and during the performance of dance. Seven IS and the MOCAP system were simultaneously used to capture the reactive response and dance movements of fifteen healthy young participants (Age: 18–35 years). Bland Altman (BA) plots, root mean square errors (RMSE), Pearson’s correlation coefficients (R), and intraclass correlation coefficients (ICC) were used to compare kinematic variables of interest between the two systems for absolute equivalency and accuracy. Limits of agreements (LOA) of the BA plots ranged from −0.23 to 0.56 and −0.21 to 0.43 for slip and trip stability variables, respectively. The RMSE for slip and trip stabilities were from 0.11 to 0.20 and 0.11 to 0.16, respectively. For the joint mobility in dance, LOA varied from −6.98–18.54, while RMSE ranged from 1.90 to 13.06. Comparison of IS and optoelectronic MOCAP system for reactive balance and body segmental kinematics revealed that R varied from 0.59 to 0.81 and from 0.47 to 0.85 while ICC was from 0.50 to 0.72 and 0.45 to 0.84 respectively for slip–trip perturbations and dance. Results of moderate to high concurrent validity of IS and MOCAP systems. These results were consistent with results from similar studies. This suggests that IS are valid tools to quantitatively analyze reactive balance and mobility kinematics during slip–trip perturbation and the performance of dance at any location outside, including the laboratory, clinical and home settings.


Author(s):  
Markus J. Bookland ◽  
Edward S. Ahn ◽  
Petronella Stoltz ◽  
Jonathan E. Martin

OBJECTIVE The authors sought to evaluate the accuracy of a novel telehealth-compatible diagnostic software system for identifying craniosynostosis within a newborn (< 1 year old) population. Agreement with gold standard craniometric diagnostics was also assessed. METHODS Cranial shape classification software accuracy was compared to that of blinded craniofacial specialists using a data set of open-source (n = 40) and retrospectively collected newborn orthogonal top-down cranial images, with or without additional facial views (n = 339), culled between April 1, 2008, and February 29, 2020. Based on image quality, midface visibility, and visibility of the cranial equator, 351 image sets were deemed acceptable. Accuracy, sensitivity, and specificity were calculated for the software versus specialist classification. Software agreement with optical craniometrics was assessed with intraclass correlation coefficients. RESULTS The cranial shape classification software had an accuracy of 93.3% (95% CI 86.8–98.8; p < 0.001), with a sensitivity of 92.0% and specificity of 94.3%. Intraclass correlation coefficients for measurements of the cephalic index and cranial vault asymmetry index compared to optical measurements were 0.95 (95% CI 0.84–0.98; p < 0.001) and 0.67 (95% CI 0.24–0.88; p = 0.003), respectively. CONCLUSIONS These results support the use of image processing–based neonatal cranial deformity classification software for remote screening of nonsyndromic craniosynostosis in a newborn population and as a substitute for optical scanner– or CT-based craniometrics. This work has implications that suggest the potential for the development of software for a mobile platform that would allow for screening by telemedicine or in a primary care setting.


Author(s):  
Steffen Held ◽  
Ludwig Rappelt ◽  
Jan-Philip Deutsch ◽  
Lars Donath

The accurate assessment of the mean concentric barbell velocity (MCV) and its displacement are crucial aspects of resistance training. Therefore, the validity and reliability indicators of an easy-to-use inertial measurement unit (VmaxPro®) were examined. Nineteen trained males (23.1 ± 3.2 years, 1.78 ± 0.08 m, 75.8 ± 9.8 kg; Squat 1-Repetition maximum (1RM): 114.8 ± 24.5 kg) performed squats and hip thrusts (3–5 sets, 30 repetitions total, 75% 1RM) on two separate days. The MCV and displacement were simultaneously measured using VmaxPro® and a linear position transducer (Speed4Lift®). Good to excellent intraclass correlation coefficients (0.91 < ICC < 0.96) with a small systematic bias (p < 0.001; ηp2 < 0.50) for squats (0.01 ± 0.04 m·s−1) and hip thrusts (0.01 ± 0.05 m·s−1) and a low limit of agreement (LoA < 0.12 m·s−1) indicated an acceptable validity. The within- and between-day reliability of the MCV revealed good ICCs (0.55 < ICC < 0.91) and a low LoA (<0.16 m·s−1). Although the displacement revealed a systematic bias during squats (p < 0.001; ηp2 < 0.10; 3.4 ± 3.4 cm), no bias was detectable during hip thrusts (p = 0.784; ηp2 < 0.001; 0.3 ± 3.3 cm). The displacement showed moderate to good ICCs (0.43 to 0.95) but a high LoA (7.8 to 10.7 cm) for the validity and (within- and between-day) reliability of squats and hip thrusts. The VmaxPro® is considered to be a valid and reliable tool for the MCV assessment.


2012 ◽  
Vol 102 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Jeanna M. Fascione ◽  
Ryan T. Crews ◽  
James S. Wrobel

Background: Identifying the variability of footprint measurement collection techniques and the reliability of footprint measurements would assist with appropriate clinical foot posture appraisal. We sought to identify relationships between these measures in a healthy population. Methods: On 30 healthy participants, midgait dynamic footprint measurements were collected using an ink mat, paper pedography, and electronic pedography. The footprints were then digitized, and the following footprint indices were calculated with photo digital planimetry software: footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index. Differences between techniques were identified with repeated-measures analysis of variance with post hoc test of Scheffe. In addition, to assess practical similarities between the different methods, intraclass correlation coefficients (ICCs) were calculated. To assess intrarater reliability, footprint indices were calculated twice on 10 randomly selected ink mat footprint measurements, and the ICC was calculated. Results: Dynamic footprint measurements collected with an ink mat significantly differed from those collected with paper pedography (ICC, 0.85–0.96) and electronic pedography (ICC, 0.29–0.79), regardless of the practical similarities noted with ICC values (P = .00). Intrarater reliability for dynamic ink mat footprint measurements was high for the footprint index, arch index, truncated arch index, Chippaux-Smirak Index, and Staheli Index (ICC, 0.74–0.99). Conclusions: Footprint measurements collected with various techniques demonstrate differences. Interchangeable use of exact values without adjustment is not advised. Intrarater reliability of a single method (ink mat) was found to be high. (J Am Podiatr Med Assoc 102(2): 130–138, 2012)


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 265 ◽  
Author(s):  
Kristen Renner ◽  
DS Williams ◽  
Robin Queen

The assessment of loading during walking and running has historically been limited to data collection in laboratory settings or with devices that require a computer connection. This study aims to determine if the loadsol®—a single sensor wireless insole—is a valid and reliable method of assessing force. Thirty (17 male and 13 female) recreationally active individuals were recruited for a two visit study where they walked (1.3 m/s) and ran (3.0 and 3.5 m/s) at a 0%, 10% incline, and 10% decline, with the visits approximately one week apart. Ground reaction force data was collected on an instrumented treadmill (1440 Hz) and with the loadsol® (100 Hz). Ten individuals completed the day 1 protocol with a newer 200 Hz loadsol®. Intraclass correlation coefficients (ICC3,k) were used to assess validity and reliability and Bland–Altman plots were generated to better understand loadsol® validity. Across conditions, the peak force ICCs ranged from 0.78 to 0.97, which increased to 0.84–0.99 with the 200 Hz insoles. Similarly, the loading rate ICCs improved from 0.61 to 0.97 to 0.80–0.96 and impulse improved from 0.61 to 0.97 to 0.90–0.97. The 200 Hz insoles may be needed for loading rate and impulse in running. For both walking and running, the loadsol® has excellent between-day reliability (>0.76).


2011 ◽  
Vol 8 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Au Bich Thuy ◽  
Leigh Blizzard ◽  
Michael Schmidt ◽  
Costan Magnussen ◽  
Emily Hansen ◽  
...  

Background:Pedometer measurement of physical activity (PA) has been shown to be reliable and valid in industrialized populations, but its applicability in economically developing Vietnam remains untested. This study assessed the feasibility, stability and validity of pedometer estimates of PA in Vietnam.Methods:250 adults from a population-based survey were randomly selected to wear Yamax pedometers and record activities for 7 consecutive days. Stability and concurrent validity were assessed using intraclass correlation coefficients (ICC) and Spearman correlation coefficients.Results:Overall, 97.6% of participants provided at least 1 day of usable recordings, and 76.2% wore pedometers for all 7 days. Only 5.2% of the sample participants were involved in work activities not measurable by pedometer. The number of steps increased with hours of wear. There was no significant difference between weekday and weekend in number of steps, and at least 3 days of recordings were required (ICC of the 3 days of recordings: men 0.96, women 0.97). Steps per hour were moderately correlated (men r = .42, women r = .26) with record estimates of total PA.Conclusions:It is feasible to use pedometers to estimate PA in Vietnam. The measure should involve at least 3 days of recording irrespective of day of the week.


2004 ◽  
Vol 84 (10) ◽  
pp. 906-918 ◽  
Author(s):  
Diane M Wrisley ◽  
Gregory F Marchetti ◽  
Diane K Kuharsky ◽  
Susan L Whitney

Background and Purpose. The Functional Gait Assessment (FGA) is a 10-item gait assessment based on the Dynamic Gait Index. The purpose of this study was to evaluate the reliability, internal consistency, and validity of data obtained with the FGA when used with people with vestibular disorders. Subjects. Seven physical therapists from various practice settings, 3 physical therapist students, and 6 patients with vestibular disorders volunteered to participate. Methods. All raters were given 10 minutes to review the instructions, the test items, and the grading criteria for the FGA. The 10 raters concurrently rated the performance of the 6 patients on the FGA. Patients completed the FGA twice, with an hour's rest between sessions. Reliability of total FGA scores was assessed using intraclass correlation coefficients (2,1). Internal consistency of the FGA was assessed using the Cronbach alpha and confirmatory factor analysis. Concurrent validity was assessed using the correlation of the FGA scores with balance and gait measurements. Results. Intraclass correlation coefficients of .86 and .74 were found for interrater and intrarater reliability of the total FGA scores. Internal consistency of the FGA scores was .79. Spearman rank order correlation coefficients of the FGA scores with balance measurements ranged from .11 to .67. Discussion and Conclusion. The FGA demonstrates what we believe is acceptable reliability, internal consistency, and concurrent validity with other balance measures used for patients with vestibular disorders.


2002 ◽  
Vol 06 (03n04) ◽  
pp. 135-145 ◽  
Author(s):  
M. Friedrich

Because the degree and duration of lumbar flexion during sewage work have only been assessed on the basis of subjective reports, the purpose of this study was to investigate the usability of a measurement system for the non-invasive assessment of lumbar sagittal posture during sewage work using ultrasound. The validity of an ultrasonic measurement device was investigated in 16 healthy individuals by comparing the measurements obtained with the device with both Schober and electronic inclinometer measurements. To determine the intra-rater reliability of the ultrasonic device, short-term, medium-term, and long-term test-retest data were collected. Moreover, the percentage of the work time sewage workers spend in each of seven lumbar flexion categories within their individual lumbar flexion range of motion was assessed. Pearson's correlation coefficients of ≥ 0.88 indicate high validity between the methods. The intraclass correlation coefficients between tests and retests (≥ 0.88) demonstrate high reproducibility of the measurement procedures. Sewage workers spend about 25% of their work day in the most extreme of the seven lumbar posture categories. Also, testing did not interfere with the workers' normal work routine. The validity and reliability data as well as the trouble-free technical performance of the ultrasonic device support its usability for the continuous measurement of lumbar posture during sewage work.


2016 ◽  
Vol 25 (4) ◽  
pp. 371-379 ◽  
Author(s):  
Robert H. Wellmon ◽  
Dawn T. Gulick ◽  
Mark L. Paterson ◽  
Colleen N. Gulick

Context:Smartphones are being used in a variety of practice settings to measure joint range of motion (ROM). A number of factors can affect the validity of the measurements generated. However, there are no studies examining smartphone-based goniometer applications focusing on measurement variability and error arising from the electromechanical properties of the device being used.Objective:To examine the concurrent validity and interrater reliability of 2 goniometric mobile applications (Goniometer Records, Goniometer Pro), an inclinometer, and a universal goniometer (UG).Design:Nonexperimental, descriptive validation study.Setting:University laboratory.Participants:3 physical therapists having an average of 25 y of experience.Main Outcome Measures:Three standardized angles (acute, right, obtuse) were constructed to replicate the movement of a hinge joint in the human body. Angular changes were measured and compared across 3 raters who used 3 different devices (UG, inclinometer, and 2 goniometric apps installed on 3 different smartphones: Apple iPhone 5, LG Android, and Samsung SIII Android). Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to examine interrater reliability and concurrent validity.Results:Interrater reliability for each of the smartphone apps, inclinometer and UG were excellent (ICC = .995–1.000). Concurrent validity was also good (ICC = .998–.999). Based on the Bland-Altman plots, the means of the differences between the devices were low (range = –0.4° to 1.2°).Conclusions:This study identifies the error inherent in measurement that is independent of patient factors and due to the smartphone, the installed apps, and examiner skill. Less than 2° of measurement variability was attributable to those factors alone. The data suggest that 3 smartphones with the 2 installed apps are a viable substitute for using a UG or an inclinometer when measuring angular changes that typically occur when examining ROM and demonstrate the capacity of multiple examiners to accurately use smartphone-based goniometers.


2016 ◽  
Vol 21 (4) ◽  
pp. 196-204 ◽  
Author(s):  
Catherine Schuster ◽  
Brian Stahl ◽  
Connie Murray ◽  
Nowai L. Keleekai ◽  
Kevin Glover

Abstract To date, there is no published, psychometrically validated, short peripheral intravenous catheter (PIVC) insertion skills checklist. Creating a valid, reliable, and generalizable checklist to measure PIVC skill is a key step in assessing baseline competence and skill mastery. Based on recognized standards and best practices, the PIVC Insertion Skills Checklist was developed to measure all the steps necessary for a best practice PIVC insertion. This includes the entire process from reading the prescriber's orders to documentation and, if the first attempt is unsuccessful, a second attempt option. Content validity was established using 3 infusion therapy experts. Evidence in support of response process validity is described. The PIVC Insertion Skills Checklist was used by 8 trained raters to assess the PIVC insertion skills, in a simulated environment, of 63 practicing clinicians working on medical and surgical units in a US teaching hospital. Internal consistency of the PIVC Insertion Skills Checklist was α = 0.84. Individual item intraclass correlation coefficients (ICCs) between rater and gold standard observations ranged from − 0.01 to 1.00 and total score ICC was 0.99 (95% confidence interval, 0.99–0.99). The current study offers validity and reliability evidence to support the use of the PIVC Insertion Skills Checklist to measure PIVC insertion skill of clinicians in a simulated environment.


Sign in / Sign up

Export Citation Format

Share Document