scholarly journals Communication Interface Manager for Improving Performance of Heterogeneous UAV Networks

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4255
Author(s):  
Laura Michaella Batista Ribeiro ◽  
Ivan Müller ◽  
Leandro Buss Becker

Exchanging messages with stable connections in missions composed of multiple unmanned aerial vehicles (UAV) remains a challenge. The variations in UAV distances from each other, considering their individual trajectories, and the medium dynamic factors are important points to be addressed.In this context, to increase the stability of UAV-to-UAV (U2U) communication with link quality, this paper presents an interface manager (IM) that is capable of improving communication in multi-UAV networks.Given a predefined set of available individual wireless interfaces, the proposed IM dynamically defines the best interface for sending messages based on on-flight conditions sensed and calculated dynamically from the wireless medium. Different simulation scenarios are generated using a complex and realistic experimental setup composed of traditional simulators such as NS-3, Gazebo, and GzUAV. IEEE 802.11n 2.4 GHz and 802.11p 5 GHz interfaces are used for the IM selection. The IM performance is evaluated in terms of metrics from the medium-access-control (MAC) and physical layers, which aim to improve and maintain the connectivity between the UAVs during the mission, and from the application layer, which targets the reliability in the delivery of messages. The obtained results show that compared with the cases where a single interface is used, the proposed IM is able to increase the network throughput and presents the best proportion of transmitted and received packets, reception power (−60 dBm to −75 dBm), and loss (−80 dB to −85 dB), resulting in a more efficient and stable network connections.

2019 ◽  
Vol 18 (3) ◽  
pp. 21-26
Author(s):  
Ayodeji Ireti Fasiku ◽  
Muhammad Nadzir Bin Marsono ◽  
Paulson Eberechukwu Numan ◽  
Asrani Lit ◽  
Shahrizal Rusli

Wireless network-on-chip (WiNoC) uses a wireless backbone on top of the traditional wired-based NoC which demonstrated high scalability. WiNoC introduces long-range single-hop link connecting distanced core and high bandwidth radio frequency interconnects that reduces multi-hop communication in conventional wired-based NoC. However, to ensure full benefits of WiNoC technology, there is a need for fair and efficient Medium Access Control (MAC) mechanism to enhance communication in the wireless Network-on-Chip. To adapt to the varying traffic demands from the applications running on a multicore environment, MAC mechanisms should dynamically adjust the transmission slots of the wireless interfaces (WIs), to ensure efficient utilization of the wireless medium in a WiNoC. This work presents a prediction model that improves MAC mechanism to predict the traffic demand of the WIs and respond accordingly by adjusting transmission slots of the WIs. This research aims to reduce token waiting time and inefficient decision making for radio hub-to-hub communication and congestion-aware routing in WiNoC to enhance end to end latency. Through system level simulation, we will show that the dynamic MAC using an History-based prediction mechanism can significantly improve the performance of a WiNoC in terms of latency and network throughput compared to the state-of-the-art dynamic MAC mechanisms.


Author(s):  
Premkumar Chithaluru ◽  
Rajeev Tiwari ◽  
Kamal Kumar

Background: Energy Efficient wireless routing has been an area of research particularly to mitigate challenges surrounding performance in category of Wireless Networks. Objectives: The Opportunistic Routing (OR) technique was explored in recent times and exhibits benefits over many existing protocols and can significantly reduce energy consumption during data communication with very limited compromise on performance. Methods : Using broadcasting nature of the wireless medium, OR practices to discourse two foremost issues of variable link quality and unpredictable node agility in constrained WSNs. OR has a potential to reduce delay in order to increase the consistency of data delivery in network. Results : Various OR based routing protocols have shown varying performances. In this paper, a detailed conceptual and experimental analysis is carried out on different protocols that uses OR technique for providing more clear and definitive view on performance parameters like Message Success Rate, Packet Delivery Ratio and Energy Consumption.


Sign in / Sign up

Export Citation Format

Share Document