scholarly journals Computer Vision-Based Microcalcification Detection in Digital Mammograms Using Fully Connected Depthwise Separable Convolutional Neural Network

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4854
Author(s):  
Khalil ur Rehman ◽  
Jianqiang Li ◽  
Yan Pei ◽  
Anaa Yasin ◽  
Saqib Ali ◽  
...  

Microcalcification clusters in mammograms are one of the major signs of breast cancer. However, the detection of microcalcifications from mammograms is a challenging task for radiologists due to their tiny size and scattered location inside a denser breast composition. Automatic CAD systems need to predict breast cancer at the early stages to support clinical work. The intercluster gap, noise between individual MCs, and individual object’s location can affect the classification performance, which may reduce the true-positive rate. In this study, we propose a computer-vision-based FC-DSCNN CAD system for the detection of microcalcification clusters from mammograms and classification into malignant and benign classes. The computer vision method automatically controls the noise and background color contrast and directly detects the MC object from mammograms, which increases the classification performance of the neural network. The breast cancer classification framework has four steps: image preprocessing and augmentation, RGB to grayscale channel transformation, microcalcification region segmentation, and MC ROI classification using FC-DSCNN to predict malignant and benign cases. The proposed method was evaluated on 3568 DDSM and 2885 PINUM mammogram images with automatic feature extraction, obtaining a score of 0.97 with a 2.35 and 0.99 true-positive ratio with 2.45 false positives per image, respectively. Experimental results demonstrated that the performance of the proposed method remains higher than the traditional and previous approaches.

2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Imad Zyout ◽  
Ikhlas Abdel-Qader ◽  
Christina Jacobs

Detection of clustered microcalcifications (MCs) in mammograms represents a significant step towards successful detection of breast cancer since their existence is one of the early signs of cancer. In this paper, a new framework that integrates Bayesian classifier and a pattern synthesizing scheme for detecting microcalcification clusters is proposed. This proposed work extracts textural, spectral, and statistical features of each input mammogram and generates models of real MCs to be used as training samples through a simplified learning phase of the Bayesian classifier. Followed by an estimation of the classifier's decision function parameters, a mammogram is segmented into the identified targets (MCs) against background (healthy tissue). The proposed algorithm has been tested using 23 mammograms from the mini-MIAS database. Experimental results achieved MCs detection with average true positive (sensitivity) and false positive (specificity) of 91.3% and 98.6%, respectively. Results also indicate that the modeling of the real MCs plays a significant role in the performance of the classifier and thus should be given further investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yongjie Yuan ◽  
Yongjun Zhang ◽  
Junyuan Wang ◽  
Ping Fang

The study intended to explore the effect of different neural network algorithms in the electrocardiogram (ECG) classification of patients with congenital heart disease (CHD). Based on the single convolutional neural network (CNN) ECG algorithm and the recurrent neural network (RNN) ECG algorithm, a multimodal neural network (MNN) ECG algorithm was constructed utilizing the MIT-BIH database as training set and test set. Furthermore, the MNN ECG algorithm was optimized to establish an improved MNN (IMNN) algorithm, which was applied to the diagnosis of CHD patients. The CHD patients admitted between August 2016 and August 2019 were selected for analysis to compare the classification effect and accuracy rate of IMNN, MNN, CNN ECG, and RNN ECG algorithms. It was found that the RNN ECG algorithm had higher classification sensitivity and true positive rate in terms of normal or bundle (NB) branch block beat, supraventricular abnormal (SA) rhythm, abnormal ventricular (AV) beat, and fusion beat (FB) than the CNN ECG algorithm ( P < 0.05 ), and the classification sensitivity and true positive rate of IMNN algorithm in the four aspects were significantly higher than those of MNN algorithm ( P < 0.05 ). The classification accuracy of CNN ECG algorithm and RNN ECG algorithm was above 98%, while that of MNN algorithm and IMNN algorithm was better than that of CNN ECG algorithm and RNN ECG algorithm, and the accuracy rate can reach 98.5% or more. Moreover, the accuracy rate of the IMNN algorithm can reach more than 98%. In conclusion, IMNN not only has a good classification ability in the simulated environment but also performs well in the actual environment, which is worthy of clinical promotion.


2019 ◽  
Vol 8 (3) ◽  
pp. 8729-8732

Early detection and characterization of breast lesion are important for a better and effective treatment of breast cancer. In this paper, four different adaptive region growing image segmentation algorithms are compared. In fact, seed selection was a vital step in the success of region growing methods, so, better schemes for seed selection methods are proposed, namely, joint probabilistic seed selection (JPSS) and Generalised simulated annealing (GSA) based seed selection. The proposed region growing methods namely Fuzzy Region Growing (FRG) and Neutrosophic Region Growing (NRG) are integrated as JPSS-FRG and GSA-NRG frameworks. Another two methods are Scale Invariant Region growing (SiRG) and Fuzzy Neutrosophic Confidence Region growing (FNCRG). The results showed that FNCRG algorithm increases breast cancer detection rate on MRI breast images with the maximum of 93% is achieved. SiRG algorithm improves the true positive rate by 13% compared to existing methods. Further, GSA-NRG makes better segmentation accuracy by 9% and true positive rate by 12%. Also, JPSS-FRG algorithm enhances segmentation accuracy by 24% and improving the true positive rate by 27% compared to Region Growing-Cellular Neural Network (RG-CNN) and Seeded Region Growing-Particle swarm optimization (SRG-PSO) methods respectively


2017 ◽  
Author(s):  
Sheng H. Wang ◽  
Muriel Lobier ◽  
Felix Siebenhühner ◽  
Tuomas Puoliväli ◽  
Satu Palva ◽  
...  

AbstractInter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key systems-level mechanism for coordination of neuronal processing and communication between brain regions. Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography (MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or “source leakage”, is a significant confounder for FC analyses and network localization.Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data.Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.HighlightsA true interaction often is “ghosted” into a multitude of spurious edges (SI)Effective in controlling and illustrating SIHyperedges have much improved TPR and graph qualityAdvantages in visualizing connectivity


Author(s):  
Inzamam Mashood Nasir ◽  
Muhammad Rashid ◽  
Jamal Hussain Shah ◽  
Muhammad Sharif ◽  
Muhammad Yahiya Haider Awan ◽  
...  

Background: Breast cancer is considered as the most perilous sickness among females worldwide and the ratio of new cases is expanding yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. Objective: Most of these systems have either used traditional handcrafted features or deep features which had a lot of noise and redundancy, which ultimately decrease the performance of the system. Methods: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pretrained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of proposed method. Results: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. Conclusion: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


Sign in / Sign up

Export Citation Format

Share Document