scholarly journals Improved Attitude and Heading Accuracy with Double Quaternion Parameters Estimation and Magnetic Disturbance Rejection

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5475
Author(s):  
Assefinew Wondosen ◽  
Jin-Seok Jeong ◽  
Seung-Ki Kim ◽  
Yisak Debele ◽  
Beom-Soo Kang

The use of unmanned aerial vehicle (UAV) applications has grown rapidly over the past decade with the introduction of low-cost microelectromechanical system (MEMS)-based sensors that measure angular velocity, gravity, and magnetic field, which are important for an object orientation determination. However, the use of low-cost sensors has also been limited because their readings are easily distorted by unwanted internal and/or external noise signals such as environmental magnetic disturbance, which lead to errors in attitude and heading estimation results. In an extended Kalman filter (EKF) process, this study proposes a method for mitigating the effect of magnetic disturbance on attitude determination by using a double quaternion parameters for representation of orientation states, which decouples the magnetometer from attitude computation. Additionally, an online measurement error covariance matrix tuning system was implemented to reject the impact of magnetic disturbance on the heading estimation. Simulation and experimental tests were conducted to verify the performance of the proposed methods in resolving the magnetic noise effect on attitude and heading. The results showed that the proposed method performed better than complimentary, gradient descent, and single quaternion-based EKF.

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Luigi Vallozzi ◽  
Domenico Pepe ◽  
Thijs Castel ◽  
Hendrik Rogier ◽  
Domenico Zito

This paper reports the results of the on-body experimental tests of a set of four planar differential antennas, originated by design variations of radiating elements with the same shape and characterized by the potential for covering wide and narrow bands. All the antenna designs have been implemented on low-cost FR4 substrate and characterized experimentally through on-body measurements. The results show the impact of the proximity to the human body on antenna performance and the opportunities in terms of potential coverage of wide and narrow bands for future ad hoc designs and implementations through wearable substrates targeting on-body and off-body communication and sensing applications.


Author(s):  
F. He ◽  
A. Habib

Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.


2019 ◽  
Vol 8 (4) ◽  
pp. 169 ◽  
Author(s):  
Shady Zahran ◽  
Adel Moussa ◽  
Naser El-Sheimy

The last decade has witnessed a wide spread of small drones in many civil and military applications. With the massive advancement in the manufacture of small and lightweight Inertial Navigation System (INS), navigation in challenging environments became feasible. Navigation of these small drones mainly depends on the integration of Global Navigation Satellite Systems (GNSS) and INS. However, the navigation performance of these small drones deteriorates quickly when the GNSS signals are lost, due to accumulated errors of the low-cost INS that is typically used in these drones. During GNSS signal outages, another aiding sensor is required to bound the drift exhibited by the INS. Before adding any additional sensor on-board the drones, there are some limitations that must be taken into considerations. These limitations include limited availability of power, space, weight, and size. This paper presents a novel unconventional method, to enhance the navigation of autonomous drones in GNSS denied environment, through a new utilization of hall effect sensor to act as flying odometer “Air-Odo” and vehicle dynamic model (VDM) for heading estimation. The proposed approach enhances the navigational solution by estimating the unmanned aerial vehicle (UAV) velocity, and heading and fusing these measurements in the Extended Kalman Filter (EKF) of the integrated system.


2014 ◽  
Vol 668-669 ◽  
pp. 1003-1006 ◽  
Author(s):  
Xian Wei Wang ◽  
Fu Cheng Cao

This paper discusses the body posture detection problem using low cost Micro-Electro-Mechanical System (MEMS) inertial sensors, for which a complementary sensor fusion solution is proposed. Considering the impact from the noise and bias drifts, through Kalman filter to complete the multi-sensor information fusion, achieved an accurate attitude determination. The experimental results show that, after using Kalman filtering algorithm to fuse acceleration sensor and signal gyroscope, it can effectively eliminate the accumulative error and significantly better dynamic characteristics of attitude angle measurement, Improving the reliability and accuracy of body posture estimation.


Author(s):  
Oscar De Silva ◽  
George K. I. Mann ◽  
Raymond G. Gosine

This paper presents a novel filter with low computational demand to address the problem of orientation estimation of a robotic platform. This is conventionally addressed by extended Kalman filtering (EKF) of measurements from a sensor suit which mainly includes accelerometers, gyroscopes, and a digital compass. Low cost robotic platforms demand simpler and computationally more efficient methods to address this filtering problem. Hence, nonlinear observers with constant gains have emerged to assume this role. The nonlinear complementary filter (NCF) is a popular choice in this domain which does not require covariance matrix propagation and associated computational overhead in its filtering algorithm. However, the gain tuning procedure of the complementary filter is not optimal, where it is often hand picked by trial and error. This process is counter intuitive to system noise based tuning capability offered by a stochastic filter like the Kalman filter. This paper proposes the right invariant formulation of the complementary filter, which preserves Kalman like system noise based gain tuning capability for the filter. The resulting filter exhibits efficient operation in elementary embedded hardware, intuitive system noise based gain tuning capability and accurate attitude estimation. The performance of the filter is validated using numerical simulations and by experimentally implementing the filter on an ARDrone 2.0 micro aerial vehicle (MAV) platform.


Author(s):  
F. He ◽  
A. Habib

Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.


2018 ◽  
Vol 13 (2) ◽  
pp. 42-47 ◽  
Author(s):  
Фатих Сибагатуллин ◽  
Fatih Sibagatullin ◽  
Зульфия Халиуллина ◽  
Zul'fiya Haliullina ◽  
Айсылу Сафиуллина ◽  
...  

In article the current problem of agriculture – utilization of livestock waste is considered. Heads of the enterprises are interested in introduction of the low-cost schemes of utilization allowing to process into short terms waste in safe products. In this work it is considered the possibility of processing of waste by means of the Mefosfon dietary supplement representing melamine salt encore (oxymethyl) of fosfinovy acid. The possibility of acceleration of process of "maturing" of navoz due to stimulation of microbic activity in waste is supposed. Results of a research of fermentation of a bespodstilochny chicken dung and dung are given in an opilochny laying with Mefosfon's addition and Baikal-EM1. The intensity of process of biodestruction of nitrogen-containing connections was estimated on change of maintenance of ions of ammonium (NH4+) which was determined by a photocolorimetric method by Romashkevich. Acceleration of processes of ammonification at addition in medicine Mefosfon waste is shown. Reduction of concentration of ammoniyny nitrogen in the samples processed by Melafen in combination with the microbic medicine Baikal-EM1 up to 30% in 4 months of an experiment is recorded. Biotesting of experimental tests has shown decrease in toxicity of a dung with III to the IV class. At the same time it was noted that the negative impact on hydrobionts of the tests processed by medicines was lower than 1,5-2 times of control tests without processing medicines.


Sign in / Sign up

Export Citation Format

Share Document