scholarly journals Development of a Combined Micro-Macro Mechanics Analytical Approach to Design Shape Memory Alloy Spring-Based Actuators and Its Experimental Validation

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5506
Author(s):  
Aniello Riccio ◽  
Carmine Napolitano ◽  
Andrea Sellitto ◽  
Valerio Acanfora ◽  
Mauro Zarrelli

In this work, an analytical procedure for the preliminary design of shape memory alloy spring-based actuators is investigated. Two static analytical models are considered and interconnected in the frame of the proposed procedure. The first model, based on the works from An, is able to determine the material properties of the SMA components by means of experimental test data and is able to size the SMA component based on the requirements of the system. The second model, based on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics of the entire actuator. The combined use of these models allows one to define and size a complex SMA actuator based on the actuation load requirements. To validate the design procedure, static experimental tests have been performed with the entire SMA actuator.

2017 ◽  
Vol 66 (4) ◽  
pp. 751-760
Author(s):  
Milena Kurzawa ◽  
Dorota Stachowiak

Abstract The paper presents the design procedure and elaborated software for designing calculation of the shape memory alloy (SMA) actuator. The thermo-mechanical behavior of a linear SMA actuator has been studied. The experimental set-up was especially designed to perform the thermo-mechanical characterization of SMA wires. The stroke (s) - temperature (T) hysteresis characteristics have been determined. The cycle of heating and cooling has been performed under a constant load. The model for the SMA actuator s - T behavior has been proposed and successfully implemented. The selected results and conclusions have been presented. The concept proposal of the linear actuator using the SMA wire has been given.


10.5772/7228 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 29 ◽  
Author(s):  
Hu Bing-Shan ◽  
Wang Li-Wen ◽  
Fu Zhuang ◽  
Zhao Yan-zheng

Wall climbing robots using negative pressure suction always employ air pumps which have great noise and large volume. Two prototypes of bio-inspired miniature suction cup actuated by shape memory alloy (SMA) are designed based on studying characteristics of biologic suction apparatuses, and the suction cups in this paper can be used as adhesion mechanisms for miniature wall climbing robots without air pumps. The first prototype with a two-way shape memory effect (TWSME) extension TiNi spring imitates the piston structure of the stalked sucker; the second one actuated by a one way SMA actuator with a bias has a basic structure of stiff margin, guiding element, leader and elastic element. Analytical model of the second prototype is founded considering the constitutive model of the SMA actuator, the deflection of the thin elastic plate under compound load and the thermo-dynamic model of the sealed air cavity. Experiments are done to test their suction characteristics, and the analytical model of the second prototype is simulated on Matlab/simulink platform and validated by experiments.


2018 ◽  
Vol 30 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Venkata Siva C Chillara ◽  
Leon M Headings ◽  
Ryohei Tsuruta ◽  
Eiji Itakura ◽  
Umesh Gandhi ◽  
...  

This work presents smart laminated composites that enable morphing vehicle structures. Morphing panels can be effective for drag reduction, for example, adaptive fender skirts. Mechanical prestress provides tailored curvature in composites without the drawbacks of thermally induced residual stress. When driven by smart materials such as shape memory alloys, mechanically-prestressed composites can serve as building blocks for morphing structures. An analytical energy-based model is presented to calculate the curved shape of a composite as a function of force applied by an embedded actuator. Shape transition is modeled by providing the actuation force as an input to a one-dimensional thermomechanical constitutive model of a shape memory alloy wire. A design procedure, based on the analytical model, is presented for morphing fender skirts comprising radially configured smart composite elements. A half-scale fender skirt for a compact passenger car is designed, fabricated, and tested. The demonstrator has a domed unactuated shape and morphs to a flat shape when actuated using shape memory alloys. Rapid actuation is demonstrated by coupling shape memory alloys with integrated quick-release latches; the latches reduce actuation time by 95%. The demonstrator is 62% lighter than an equivalent dome-shaped steel fender skirt.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


2016 ◽  
Vol 248 ◽  
pp. 227-234
Author(s):  
Waldemar Rączka ◽  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Janusz Kowal

Shape Memory Alloy is a material used to designing actuators. These actuators have many advantages. They are light, strong and silent. They are building in laboratory and tested because beside advantages they have disadvantages too. SMA actuators have nonlinear characteristics with hysteresis loop.In the first part of the paper Shape Memory Alloys are shortly described. Next mathematical model was formulated. In the paper the Preisach model was developed. Discrete form of the model was considered and implemented. After parameter identification model was implemented in LabView. Tests of the model were conducted and results were worked. Obtained characteristics of the SMA actuator are shown in the paper. At the end of the paper the conclusions were formulated.


2020 ◽  
Vol 31 (16) ◽  
pp. 1920-1934 ◽  
Author(s):  
Chen Liang ◽  
Yongquan Wang ◽  
Tao Yao ◽  
Botao Zhu

This article presents a soft crawling robot prototype with a simple architecture inspired by inchworms. The robot functionally integrates the torso (body) and feet in a monolithic curved structure that only needs a single shape memory alloy coil and differential friction to actuate it. A novel foot configuration is proposed, which makes the two feet, with an anti-symmetrical friction layout, can be alternately anchored, to match the contraction–recovery sequence of the body adaptively. Based on the antagonistic configuration between the shape memory alloy actuator and the elastic body, a vertically auxiliary spring was adopted to enhance the interaction mechanism. Force and kinematic analysis was undertaken, focusing on the parametric design of the special foot configuration. A miniature robot prototype was then 3D-printed (54 mm in length and 9.77 g in weight), using tailored thermoplastic polyurethane elastomer as the body material. A series of experimental tests and evaluations were carried out to assess its performance under different conditions. The results demonstrated that under appropriate actuation conditions, the compact robot prototype could accomplish a relative speed of 0.024 BL/s (with a stride length equivalent to 27% of its body length) and bear a load over five times to its own weight.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 40 ◽  
Author(s):  
Daniela Maffiodo ◽  
Terenziano Raparelli

To meet the needs of present-day robotics, a family of gripping flexible fingers has been designed. Each of them consists of a number of independent and flexible modules that can be assembled in different configurations. Each module consists of a body with a flexible central rod and three longitudinally positioned shape memory alloy (SMA) wires. When heated by the Joule effect, one to two SMA wires shorten, allowing the module to bend. The return to undeformed conditions is achieved in calm air and is guaranteed by the elastic bias force exerted by the central rod. This article presents the basic concept of the module and a simple mathematical model for the design of the device. Experimental tests were carried out on three prototypes with bodies made of different materials. The results of these tests confirm the need to reduce the antagonistic action of the inactive SMA wires and led to the realization of a fourth prototype equipped with an additional SMA wire-driven locking/unlocking device for these wires. The preliminary results of this last prototype are encouraging.


2018 ◽  
Vol 29 (12) ◽  
pp. 2619-2640 ◽  
Author(s):  
Efthymios Kolyvas ◽  
Anthony Tzes

Shape memory alloy actuated devices employing a network of antagonistic components can reach an equilibrium of the internal forces by multiple sets of individual force magnitudes. In networks of star topologies particularly, the actuators are placed radially with one end connected at a common node. The ability to produce multiple sets of force equilibria suggests then that similar motions of the common node correspond to different thermomechanical paths. Two factors linked to this behavior are examined in this work, namely the initial design of the antagonistic system and the operational profile used during actuation. A shape memory alloy model is initially constructed based on an elementary hysteresis operator to produce a direct representation of the shape memory alloy behavior in the force–deformation plane. This description enables the identification of the operating point for the actuator by the geometric relationship of these models. In the second part, the placement of the antagonists is guided by the model based on specifications on the range of the workspace and the internal forces. The antagonistic operation is finally compared, in terms of time, work produced, and energy consumption, for a bang-bang (minimum time controller for the actuator) and a bang-off-bang (minimum internal forces for the system) actuation scheme.


Author(s):  
B. Y. Ren ◽  
B. Q. Chen

The different Shape Memory Alloy (SMA) actuators have been widely used in the fields of smart structures. However, the accurate prediction of thermomechanical behavior of SMA actuators is very difficult due to the nonlinearity of inherence hysteresis of SMA. Therefore, the tracking control accuracy of SMA actuator is very important for the practical application of the SMA actuator. A dynamic hysteresis model of bias-type SMA actuator based on constitutive law developed by Brinson et al. and hysteresis model developed by Ikuta et al. is presented. The control systems composed of the Proportional Integral Derivative (PID) controller as well as a fuzzy controller or a fuzzy-PID composite controller for compensating the hysteresis is proposed. The effort of tracking control system is analyzed according to the simulation on the displacement of SMA actuator with the three kinds of controllers. The result can provide a reference for the application of SMA actuator in the fields of smart structures.


Sign in / Sign up

Export Citation Format

Share Document