scholarly journals A Safety Reinforced Cooperative Adaptive Cruise Control Strategy Accounting for Dynamic Vehicle-to-Vehicle Communication Failure

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6158
Author(s):  
Yi Liu ◽  
Wei Wang

Cooperative Adaptive Cruise Control (CACC) is an advanced technique for organizing and managing a vehicle platoon, which employs the Vehicle-to-Vehicle/Vehicle-to-Infrastructure (V2V/V2I, or V2X) wireless communication to minimize the inter-vehicle distance while guaranteeing string-stability. Consequently, the conventional CACC system relies heavily on the quality of communications, which means that the regular CACC platoon is sensitive to the communication failure. Therefore, in this paper, a Safety Reinforced Cooperative Adaptive Cruise Control (SR-CACC) strategy is proposed to resist unexpected communication failure. Different from the regular CACC system, the safety enhanced platoon control system is embedded with a dual-branch control strategy. When a fatal wireless communication failure is detected and confirmed, the SR-CACC system will automatically activate the alternative sensor-based adaptive cruise control strategy. Moreover, to make the transforming process smooth, a linear smooth transition algorithm is added to the SR-CACC system. Then, to verify the performance of the proposed SR-CACC system, we conducted a simulation experiment with a heterogonous platoon constructed with eight vehicles. The experiments results reveal that, under the extremely poor communication environment, the proposed SR-CACC strategy can significantly improve the safety performance of the organized vehicle platoon.

Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


Author(s):  
Iman Mahdinia ◽  
Ramin Arvin ◽  
Asad J. Khattak ◽  
Amir Ghiasi

Connected and automated vehicle technologies have the potential to significantly improve transportation system performance. In particular, advanced driver-assistance systems, such as adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC), may lead to substantial improvements in performance by decreasing driver inputs and taking over control of the vehicle. However, the impacts of these technologies on the vehicle- and system-level energy consumption, emissions, and safety have not been quantified in field tests. The goal of this paper is to study the impacts of automated and cooperative systems in mixed traffic containing conventional, ACC, and CACC vehicles. To reach this goal, experimental data based on real-world conditions are collected (in tests conducted by the Federal Highway Administration and the U.S. Department of Transportation) with presence of ACC, CACC, and conventional vehicles in a vehicle platoon scenario and a cooperative merging scenario. Specifically, a platoon of five vehicles with different vehicle type combinations is analyzed to generate new knowledge about potential safety, energy efficiency, and emission improvement from vehicle automation and cooperation. Results show that adopting the CACC system in a five-vehicle platoon substantially reduces the driving volatility and reduces the risk of rear-end collision which consequently improves safety. Furthermore, it decreases fuel consumption and emissions compared with the ACC system and manually-driven vehicles. Results of the merging scenario show that while the cooperative merging system slightly reduces the driving volatility, the fuel consumption and emissions can increase because of sharper accelerations of CACC vehicles compared with manually-driven vehicles.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 369-378 ◽  
Author(s):  
Xiulan Song ◽  
Xiaoxin Lou ◽  
Limin Meng

In this paper, we consider the cooperative adaptive cruise control problem of connected autonomous vehicles networked by heterogeneous wireless channel transmission. The cooperative adaptive cruise control model with variable input delays is established to describe the varying time-delays induced from vehicular actuators and heterogeneous channel transmission. Then a set of decentralized time-delay feedback cooperative adaptive cruise control controllers is computed in such way that each vehicle evaluates its own adaptive cruise control strategy using only neighborhood information. In order to establish string stability of the connected vehicle platoon with the decentralized controllers, the sufficient conditions are obtained in the form of linear matrix inequalities. The scenarios, consisting of four different cars with three heterogeneous wireless channels, are used to demonstrate the effectiveness of the presented method.


Author(s):  
Serdar Coskun ◽  
Cong Huang ◽  
Fengqi Zhang

Cooperative longitudinal motion control can greatly contribute to safety, mobility, and sustainability issues in today’s transportation systems. This article deals with the development of cooperative adaptive cruise control (CACC) under uncertainty using a model predictive control strategy. Specifically, uncertainties arising in the system are presented as disturbances acting in the system and measurement equations in a state-space formulation. We aim to design a predictive controller under a common goal (cooperative control) such that the equilibrium from initial condition of vehicles will remain stable under disturbances. The state estimation problem is handled by a Kalman filter and the optimal control problem is formulated by the quadratic programming method under both state and input constraints considering traffic safety, efficiency, as well as driving comfort. In the sequel, adopting the CACC system in four-vehicle platoon scenarios are tested via MATLAB/Simulink for cooperative vehicle platooning control under different disturbance realizations. Moreover, the computational effectiveness of the proposed control strategy is verified with respect to different platoon sizes for possible real-time deployment in next-generation cooperative vehicles.


Sign in / Sign up

Export Citation Format

Share Document