scholarly journals Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7432
Author(s):  
Xinmeng Guo ◽  
Jiang Wang

Acupuncture is one of the oldest traditional medical treatments in Asian countries. However, the scientific explanation regarding the therapeutic effect of acupuncture is still unknown. The much-discussed hypothesis it that acupuncture’s effects are mediated via autonomic neural networks; nevertheless, dynamic brain activity involved in the acupuncture response has still not been elicited. In this work, we hypothesized that there exists a lower-dimensional subspace of dynamic brain activity across subjects, underpinning the brain’s response to manual acupuncture stimulation. To this end, we employed a variational auto-encoder to probe the latent variables from multichannel EEG signals associated with acupuncture stimulation at the ST36 acupoint. The experimental results demonstrate that manual acupuncture stimuli can reduce the dimensionality of brain activity, which results from the enhancement of oscillatory activity in the delta and alpha frequency bands induced by acupuncture. Moreover, it was found that large-scale brain activity could be constrained within a low-dimensional neural subspace, which is spanned by the “acupuncture mode”. In each neural subspace, the steady dynamics of the brain in response to acupuncture stimuli converge to topologically similar elliptic-shaped attractors across different subjects. The attractor morphology is closely related to the frequency of the acupuncture stimulation. These results shed light on probing the large-scale brain response to manual acupuncture stimuli.

2021 ◽  
Author(s):  
Corson N Areshenkoff ◽  
Daniel J Gale ◽  
Joe Y Nashed ◽  
Dominic Standage ◽  
John Randall Flanagan ◽  
...  

Humans vary greatly in their motor learning abilities, yet little is known about the neural mechanisms that underlie this variability. Recent neuroimaging and electrophysiological studies demonstrate that large-scale neural dynamics inhabit a low-dimensional subspace or manifold, and that learning is constrained by this intrinsic manifold architecture. Here we asked, using functional MRI, whether subject-level differences in neural excursion from manifold structure can explain differences in learning across participants. We had subjects perform a sensorimotor adaptation task in the MRI scanner on two consecutive days, allowing us to assess their learning performance across days, as well as continuously measure brain activity. We find that the overall neural excursion from manifold activity in both cognitive and sensorimotor brain networks is associated with differences in subjects' patterns of learning and relearning across days. These findings suggest that off-manifold activity provides an index of the relative engagement of different neural systems during learning, and that intersubject differences in patterns of learning and relearning across days are related to reconfiguration processes in cognitive and sensorimotor networks during learning.


2019 ◽  
Author(s):  
Mark Allen Thornton ◽  
Diana Tamir

Humans engage in a wide variety of different actions and activities. These range from simple motor actions like reaching for an object, to complex activities like governing a nation. Navigating everyday life requires people to make sense of this diversity of actions. We suggest that the mind simplifies this complex domain by attending primarily to the most essential features of actions. Using a parsimonious set of action dimensions, the mind can organize action knowledge in a low-dimensional representational space. In nine studies, we derive and validate such an action taxonomy. Studies 1-3 use large-scale text analyses to generate and test potential action dimensions. Study 4 validates interpretable labels for these dimensions. Studies 5-7 demonstrate that these dimensions can explain human judgments about actions. We perform model selection on data from Studies 5-7 to arrive at the optimal set of six psychological dimensions, together forming the Abstraction, Creation, Tradition, Food, Animacy, Spiritualism Taxonomy (ACT-FAST). Study 8 demonstrates that ACT-FAST can predict socially relevant qualities of actions, including how, when, where, why, and by whom they are performed. Finally, Study 9 shows that ACT-FAST can explain action-related patterns of brain activity using naturalistic fMRI. Together, these studies reveal the dimensional structure the mind applies to organize action concepts.


2020 ◽  
Author(s):  
Rylan Schaeffer ◽  
Mikail Khona ◽  
Leenoy Meshulam ◽  
Ila Rani Fiete ◽  

AbstractWe study how recurrent neural networks (RNNs) solve a hierarchical inference task involving two latent variables and disparate timescales separated by 1-2 orders of magnitude. The task is of interest to the International Brain Laboratory, a global collaboration of experimental and theoretical neuroscientists studying how the mammalian brain generates behavior. We make four discoveries. First, RNNs learn behavior that is quantitatively similar to ideal Bayesian baselines. Second, RNNs perform inference by learning a two-dimensional subspace defining beliefs about the latent variables. Third, the geometry of RNN dynamics reflects an induced coupling between the two separate inference processes necessary to solve the task. Fourth, we perform model compression through a novel form of knowledge distillation on hidden representations – Representations and Dynamics Distillation (RADD)– to reduce the RNN dynamics to a low-dimensional, highly interpretable model. This technique promises a useful tool for interpretability of high dimensional nonlinear dynamical systems. Altogether, this work yields predictions to guide exploration and analysis of mouse neural data and circuity.


2013 ◽  
Vol 448-453 ◽  
pp. 2428-2433
Author(s):  
Xiao Dong Li ◽  
Ji Nan Zhang ◽  
Peng Li ◽  
Hong Jie Jia ◽  
Tao Jiang

This paper presents a new method to identify coherent generator groups in power system based on projection pursuit. Projection pursuit algorithm is introduced to model wide-area measured time series and analyses high-dimensional data in low-dimensional subspace. It could seek and extract key projection vectors reflecting generator coherent features and identify the coherency of generators according to projection directions of generators. The presented technique could realize real-time identification of coherent generators, in which grouping is based on measured data avoiding the impact of model parameters. It proves that the composition of principal components has corresponding relationship with system oscillation mode. Finally, China Southern Power Grid is used as testing system to verify the feasibility and effectiveness of the method.


2005 ◽  
Vol 23 ◽  
pp. 1-40 ◽  
Author(s):  
N. Roy ◽  
G. Gordon ◽  
S. Thrun

Standard value function approaches to finding policies for Partially Observable Markov Decision Processes (POMDPs) are generally considered to be intractable for large models. The intractability of these algorithms is to a large extent a consequence of computing an exact, optimal policy over the entire belief space. However, in real-world POMDP problems, computing the optimal policy for the full belief space is often unnecessary for good control even for problems with complicated policy classes. The beliefs experienced by the controller often lie near a structured, low-dimensional subspace embedded in the high-dimensional belief space. Finding a good approximation to the optimal value function for only this subspace can be much easier than computing the full value function. We introduce a new method for solving large-scale POMDPs by reducing the dimensionality of the belief space. We use Exponential family Principal Components Analysis (Collins, Dasgupta & Schapire, 2002) to represent sparse, high-dimensional belief spaces using small sets of learned features of the belief state. We then plan only in terms of the low-dimensional belief features. By planning in this low-dimensional space, we can find policies for POMDP models that are orders of magnitude larger than models that can be handled by conventional techniques. We demonstrate the use of this algorithm on a synthetic problem and on mobile robot navigation tasks.


Acta Numerica ◽  
2021 ◽  
Vol 30 ◽  
pp. 445-554
Author(s):  
Omar Ghattas ◽  
Karen Willcox

This article addresses the inference of physics models from data, from the perspectives of inverse problems and model reduction. These fields develop formulations that integrate data into physics-based models while exploiting the fact that many mathematical models of natural and engineered systems exhibit an intrinsically low-dimensional solution manifold. In inverse problems, we seek to infer uncertain components of the inputs from observations of the outputs, while in model reduction we seek low-dimensional models that explicitly capture the salient features of the input–output map through approximation in a low-dimensional subspace. In both cases, the result is a predictive model that reflects data-driven learning yet deeply embeds the underlying physics, and thus can be used for design, control and decision-making, often with quantified uncertainties. We highlight recent developments in scalable and efficient algorithms for inverse problems and model reduction governed by large-scale models in the form of partial differential equations. Several illustrative applications to large-scale complex problems across different domains of science and engineering are provided.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yiqin Lin ◽  
Liang Bao ◽  
Yanhua Cao

We propose an augmented Arnoldi-Tikhonov regularization method for the solution of large-scale linear ill-posed systems. This method augments the Krylov subspace by a user-supplied low-dimensional subspace, which contains a rough approximation of the desired solution. The augmentation is implemented by a modified Arnoldi process. Some useful results are also presented. Numerical experiments illustrate that the augmented method outperforms the corresponding method without augmentation on some real-world examples.


2020 ◽  
Vol 132 (4) ◽  
pp. 1234-1242 ◽  
Author(s):  
Paolo Belardinelli ◽  
Ramin Azodi-Avval ◽  
Erick Ortiz ◽  
Georgios Naros ◽  
Florian Grimm ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson’s disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21–35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4–6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.


2021 ◽  
Vol 11 (3) ◽  
pp. 330
Author(s):  
Dalton J. Edwards ◽  
Logan T. Trujillo

Traditionally, quantitative electroencephalography (QEEG) studies collect data within controlled laboratory environments that limit the external validity of scientific conclusions. To probe these validity limits, we used a mobile EEG system to record electrophysiological signals from human participants while they were located within a controlled laboratory environment and an uncontrolled outdoor environment exhibiting several moderate background influences. Participants performed two tasks during these recordings, one engaging brain activity related to several complex cognitive functions (number sense, attention, memory, executive function) and the other engaging two default brain states. We computed EEG spectral power over three frequency bands (theta: 4–7 Hz, alpha: 8–13 Hz, low beta: 14–20 Hz) where EEG oscillatory activity is known to correlate with the neurocognitive states engaged by these tasks. Null hypothesis significance testing yielded significant EEG power effects typical of the neurocognitive states engaged by each task, but only a beta-band power difference between the two background recording environments during the default brain state. Bayesian analysis showed that the remaining environment null effects were unlikely to reflect measurement insensitivities. This overall pattern of results supports the external validity of laboratory EEG power findings for complex and default neurocognitive states engaged within moderately uncontrolled environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blake W. Saurels ◽  
Wiremu Hohaia ◽  
Kielan Yarrow ◽  
Alan Johnston ◽  
Derek H. Arnold

AbstractPrediction is a core function of the human visual system. Contemporary research suggests the brain builds predictive internal models of the world to facilitate interactions with our dynamic environment. Here, we wanted to examine the behavioural and neurological consequences of disrupting a core property of peoples’ internal models, using naturalistic stimuli. We had people view videos of basketball and asked them to track the moving ball and predict jump shot outcomes, all while we recorded eye movements and brain activity. To disrupt people’s predictive internal models, we inverted footage on half the trials, so dynamics were inconsistent with how movements should be shaped by gravity. When viewing upright videos people were better at predicting shot outcomes, at tracking the ball position, and they had enhanced alpha-band oscillatory activity in occipital brain regions. The advantage for predicting upright shot outcomes scaled with improvements in ball tracking and occipital alpha-band activity. Occipital alpha-band activity has been linked to selective attention and spatially-mapped inhibitions of visual brain activity. We propose that when people have a more accurate predictive model of the environment, they can more easily parse what is relevant, allowing them to better target irrelevant positions for suppression—resulting in both better predictive performance and in neural markers of inhibited information processing.


Sign in / Sign up

Export Citation Format

Share Document