scholarly journals Electromyography, Stiffness and Kinematics of Resisted Sprint Training in the Specialized SKILLRUN® Treadmill Using Different Load Conditions in Rugby Players

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7482
Author(s):  
Antonio Martínez-Serrano ◽  
Elena Marín-Cascales ◽  
Konstantinos Spyrou ◽  
Tomás T. Freitas ◽  
Pedro E. Alcaraz

This study’s aim was to analyze muscle activation and kinematics of sled-pushing and resisted-parachute sprinting with three load conditions on an instrumentalized SKILLRUN® treadmill. Nine male amateur rugby union players (21.3 ± 4.3 years, 75.8 ± 10.2 kg, 176.6 ± 8.8 cm) performed a sled-push session consisting of three 15-m repetitions at 20%, 55% and 90% body mas and another resisted-parachute session using three different parachute sizes (XS, XL and 3XL). Sprinting kinematics and muscle activity of three lower-limb muscles (biceps femoris (BF), vastus lateralis (VL) and gastrocnemius medialis (GM)) were measured. A repeated-measures analysis of variance (RM-ANOVA) showed that higher loads during the sled-push increased (VL) (p ≤ 0.001) and (GM) (p ≤ 0.001) but not (BF) (p = 0.278) activity. Furthermore, it caused significant changes in sprinting kinematics, stiffness and joint angles. Resisted-parachute sprinting did not change kinematics or muscle activation, despite producing a significant overload (i.e., speed loss). In conclusion, increased sled-push loading caused disruptions in sprinting technique and altered lower-limb muscle activation patterns as opposed to the resisted-parachute. These findings might help practitioners determine the more adequate resisted sprint exercise and load according to the training objective (e.g., power production or speed performance).

2001 ◽  
Vol 10 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Jennifer Erin Earl ◽  
Jay Hertel

Objective:To identify integrated EMG (I-EMG) activity of 6 lower-extremity muscles during the 8 Star Excursion Balance Tests (SEBTs).Design and Setting:Repeated measures, laboratory setting.Subjects:10 healthy young adults.Interventions:The SEBTs require the subject to balance on the stance leg and maximally reach with the contralateral foot along each of 8 lines extending from a common axis at 45° intervals.Measures:I-EMG activity of the vastus medialis obliquus (VMO), vastus lateralis (VL), medial hamstring (MH), biceps femoris (BF), anterior tibialis (AT), and gas-trocnemius.Results:Significant differences were found in all muscles (P < .05) except the gastrocnemius (P = .08). VMO and VL activity tended to be greatest with anteriorly directed excursions, whereas the MH and BF activity were greatest with posteriorly directed excursions. AT activity was lowest with the lateral excursion.Conclusions:Performance of the different SEBTs results in different lower-extremity muscle-activation patterns.


2012 ◽  
Vol 7 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Jack M. Burns ◽  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss ◽  
Greig Watson ◽  
Angus Burnett ◽  
...  

Purpose:Manufacturers of uncoupled cycling cranks claim that their use will increase economy of motion and gross efficiency. Purportedly, this occurs by altering the muscle-recruitment patterns contributing to the resistive forces occurring during the recovery phase of the pedal stroke. Uncoupled cranks use an independent-clutch design by which each leg cycles independently of the other (ie, the cranks are not fixed together). However, research examining the efficacy of training with uncoupled cranks is equivocal. The purpose of this study was to determine the effect of short-term training with uncoupled cranks on the performance-related variables economy of motion, gross efficiency, maximal oxygen uptake (VO2max), and muscle-activation patterns.Methods:Sixteen trained cyclists were matched-paired into either an uncoupled-crank or a normal-crank training group. Both groups performed 5 wk of training on their assigned cranks. Before and after training, participants completed a graded exercise test using normal cranks. Expired gases were collected to determine economy of motion, gross efficiency, and VO2max, while integrated electromyography (iEMG) was used to examine muscle-activation patterns of the vastus lateralis, biceps femoris, and gastrocnemius.Results:No significant changes between groups were observed for economy of motion, gross efficiency, VO2max, or iEMG in the uncoupled- or normal-crank group.Conclusions:Five weeks of training with uncoupled cycling cranks had no effect on economy of motion, gross efficiency, muscle recruitment, or VO2max compared with training on normal cranks.


Author(s):  
Przemysław Pietraszewski ◽  
Artur Gołaś ◽  
Michał Krzysztofik ◽  
Marta Śrutwa ◽  
Adam Zając

The purpose of this cross-sectional study was to analyze changes in normalized surface electromyography (sEMG) signals for the gastrocnemius medialis, biceps femoris, gluteus maximus, tibialis anterior, and vastus lateralis muscles occurring during a 400 m indoor sprint between subsequent curved sections of the track. Ten well-trained female sprinters (age: 21 ± 4 years; body mass: 47 ± 5 kg; body height: 161 ± 7 cm; 400 m personal best: 52.4 ± 1.1 s) performed an all-out 400 m indoor sprint. Normalized sEMG signals were recorded bilaterally from the selected lower limb muscles. The two-way ANOVA (curve × side) revealed no statistically significant interaction. However, the main effect analysis showed that normalized sEMG signals significantly increased in subsequent curves run for all the studied muscles: gastrocnemius medialis (p = 0.003), biceps femoris (p < 0.0001), gluteus maximus (p = 0.044), tibialis anterior (p = 0.001), and vastus lateralis (p = 0.023), but differences between limbs were significant only for the gastrocnemius medialis (p = 0.012). The results suggest that the normalized sEMG signals for the lower limb muscles increased in successive curves during the 400 m indoor sprint. Moreover, the gastrocnemius medialis of the inner leg is highly activated while running curves; therefore, it should be properly prepared for high demands, and attention should be paid to the possibility of the occurrence of a negative adaptation, such as asymmetries.


Author(s):  
Curt Laubscher ◽  
Ryan Farris ◽  
Antonie van den Bogert ◽  
Jerzy T. Sawicki

Abstract This paper presents a newly developed lower-limb exoskeleton tested for walking assistance. The novel exoskeleton design methodology uses additive manufacturing and a parametrized model based on user anthropometrics to give a person-specific custom fit. The process is applied to average children and a healthy adult, and a prototype device is fabricated for the adult to validate the feasibility of the approach. The developed prototype actuates the hip and knee joints without restricting hip abduction-adduction motion. To test usability of the device and evaluate walking assistance, user torque, mechanical energy generated, and muscle activation are analyzed in an assisted condition where the subject walks on a level treadmill with the exoskeleton powered. This is compared to an unassisted condition with the exoskeleton unpowered and a baseline condition with the subject not wearing the exoskeleton. Comparing assisted to baseline conditions, torque magnitudes increased at the hip and knee, mechanical energy generated increased at the hip but decreased at the knee, and muscle activations decreased in the Biceps Femoris and increased in the Vastus Lateralis. The presented preliminary results are inconclusive on whether the newly developed exoskeleton can assist in walking though show promise for basic usability of the device.


2019 ◽  
Vol 67 (1) ◽  
pp. 73-83
Author(s):  
Alireza Monajati ◽  
Eneko Larumbe-Zabala ◽  
Mark Goss-Sampson ◽  
Fernando Naclerio

AbstractThe aim of this study was to perform an electromyography comparison of three commonly used lower limb injury prevention exercises: a single-leg squat on a bench (SLSB), a double-leg squat (DLS) and a double-leg squat on a BOSU® balance trainer (DLSB). After determining the maximum isometric voluntary contraction of the hamstring and quadriceps, eight female athletes performed 3 repetitions of each exercise, while electromyography activity of the biceps femoris (BF), semitendinosus (ST), vastus lateralis (VL) and vastus medialis (VM) was monitored. Comparisons between exercises revealed higher activation in BF (descending phase: p = 0.016, d = 1.36; ascending phase: p = 0.046, d = 1.11), ST (descending phase: p = 0.04, d = 1.87; ascending phase: p = 0.04, d = 1.87), VL (ascending phase: p = 0.04, d = 1.17) and VM (descending phase: p = 0.05, d = 1.11; ascending phase: p = 0.021, d = 1.133) muscles for the SLSB compared to the DLSQ. Furthermore, higher muscular activation of the ST (ascending phase: p = 0.01, d = 1.51; descending phase: p = 0.09, d = 0.96) and VM (ascending phase: p = 0.065, d = 1.03; descending phase: p = 0.062, d = 1.05) during the SLSB with respect to the DLSB was observed. In conclusion, the SLSB elicits higher neuromuscular activation in both hamstring and quadriceps muscles compared to the other two analysed exercises. Additionally, the higher muscle activation of both medial muscles (ST and VM) during the SLSB suggests that single leg squatting exercises may enhance lower limb medial to lateral balance, and improve knee stability in the frontal plane.


2018 ◽  
Vol 27 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Michael Sanders ◽  
Anton E. Bowden ◽  
Spencer Baker ◽  
Ryan Jensen ◽  
McKenzie Nichols ◽  
...  

Context: Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. Objective: To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Design: Within-subject, repeated measures. Setting: University biomechanics laboratory. Participants: Sixteen able-bodied individuals (7 females and 9 males). Intervention: Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Main Outcome Measure: Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Results: Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Conclusions: Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider these results when recommending ambulatory aids for foot or ankle injuries.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1666
Author(s):  
Taian M. Vieira ◽  
Giacinto Luigi Cerone ◽  
Costanza Stocchi ◽  
Morgana Lalli ◽  
Brian Andrews ◽  
...  

The transcutaneous stimulation of lower limb muscles during indoor rowing (FES Rowing) has led to a new sport and recreation and significantly increased health benefits in paraplegia. Stimulation is often delivered to quadriceps and hamstrings; this muscle selection seems based on intuition and not biomechanics and is likely suboptimal. Here, we sample surface EMGs from 20 elite rowers to assess which, when, and how muscles are activated during indoor rowing. From EMG amplitude we specifically quantified the onset of activation and silencing, the duration of activity and how similarly soleus, gastrocnemius medialis, tibialis anterior, rectus femoris, vastus lateralis and medialis, semitendinosus, and biceps femoris muscles were activated between limbs. Current results revealed that the eight muscles tested were recruited during rowing, at different instants and for different durations. Rectus and biceps femoris were respectively active for the longest and briefest periods. Tibialis anterior was the only muscle recruited within the recovery phase. No side differences in the timing of muscle activity were observed. Regression analysis further revealed similar, bilateral modulation of activity. The relevance of these results in determining which muscles to target during FES Rowing is discussed. Here, we suggest a new strategy based on the stimulation of vasti and soleus during drive and of tibialis anterior during recovery.


2021 ◽  
Vol 30 (3) ◽  
pp. 387-395
Author(s):  
Soojin Kim ◽  
Joo-Hyun Lee ◽  
Jihye Heo ◽  
Eunwook Chang

PURPOSE: The purpose of this study was to compare thigh muscle activities and muscle co-activation when performing squats, wall squats, and Spanish squats on stable and unstable ground.METHODS: Twenty-two healthy male subjects (age: 22.50±2.70 years, height: 178.72±6.04 cm, mass: 76.50±6.80 kg, body mass index: 24.00±2.10 kg/m2, and Godin activity questionnaire: 56.30±24.10) voluntarily participated in the study. All of the participants performed three different squat exercises on the floor and the BOSU ball with an electromyograph attached to each participant’s quadriceps (rectus femoris, RF; vastus lateralis, VL; and vastus medialis, VM) and hamstrings (biceps femoris, BF; semitendinosus, ST; and semimembranosus, SM). Repeated measures of analysis of variance were utilized to compare muscle activity during the three squats exercises by floor type.RESULTS: RF (p<.001, η2=.689), VL (p<.001, η2=.622), and VM (p=.002, η2=.375) showed significant differences between exercises. Spanish squats yielded greater BF activity than did wall squats (p=.018, η2=.269). ST yielded greater muscle activity with the BOSU ball than on the floor (p=.018, η2=.269). Finally, there was a significant ground exercise interaction effect on the co-activation, showing greater muscle co-activation with Spanish squats on the BOSU ball compared to squats, squats on the BOSU ball, and wall squat on the BOSU ball.CONCLUSIONS: The findings of this study indicate that Spanish squats could be an effective exercise option for the facilitation of RF, VL, VM, and BF muscle activation. In particular, performing Spanish squats on an unstable surface could be useful for patients who need to improve their quadriceps muscle activation.


Sign in / Sign up

Export Citation Format

Share Document