scholarly journals Methods of Projecting Mode Amplitude Changes on the Wavelength Axis in Order to Determine the Bending Radius on the Basis of TFBG Grating Spectra

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7526
Author(s):  
Sławomir Cięszczyk ◽  
Damian Harasim ◽  
Ainur Ormanbekova ◽  
Krzysztof Skorupski ◽  
Martyna Wawrzyk

Tilted fibre Bragg grating (TFBG) are used as sensors to determine many quantities such as refractive index, temperature, stress, rotation and bending. The TFBG spectrum contains a lot of information and various algorithms are used for its analysis. However, most of these algorithms are dedicated to the analysis of spectral changes under the influence of the refractive index. The most popular algorithm used for this purpose is to calculate the area occupied by cladding modes. Among the remaining algorithms, there are those that use the determination of the cut-off wavelength as a surrounding refractive index (SRI) indicator. Projection on the wavelength axis can also be used to calculate the bending radius of the fibre. However, this is a more difficult task than with SRI, because the mode decay in bending is not so easy to catch. In this article, we propose a multi-step algorithm that allows to determine the impact of bending on mode leakage. At the same time, the place on the wavelength from the side of the Bragg mode and the ghost mode is determined, which represents the cladding mode radiated from the cladding under the influence of bending. The developed algorithm consists of the following operations carried out on the transmission spectrum: Fourier filtering, calculation of the cumulative value of the spectral length, low-pass filtering of the cumulative curve or its corresponding polynomial approximation, determination of the first and second derivative of the approximated curve, and projection of the second derivative of the curve on the wavelength axis. The shift of the wavelength determined in this way indirectly indicates the bending radius of the optical fibre. Based on multiple measurements, we prove that the presented algorithm provides better results when determining the bending radius compared to other algorithms adopted for this purpose and proposed for SRI measurements. Additionally, we analyse the method of determining the shift of a fragment of the spectrum using the phase of the discrete Fourier transform.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umar Farooque ◽  
Rakesh Ranjan

AbstractIn order to select the heterogeneous multicore fiber (MCF) configuration with ultra-low crosstalk and low peak bending radius, comparative crosstalk analysis have been done for the three possible core configurations, namely, Configuration 1 - different refractive index (R.I.) and different radius, Configuration 2 - different R.I., and Configuration 3 - different radius. Using the coupled mode equation and the simplified expressions of mode coupling coefficient (MCC) for different configurations of heterogeneous cores, the crosstalk performance of all the heterogeneous MCF configurations along with the homogeneous MCF have been investigated analytically with respect to core pitch (D) and fiber bending radius (${R}_{b}$). Further, these expressions of MCC have been extended to obtain the simplified expressions of MCC for the estimation of crosstalk levels in respective trench-assisted (TA) heterogeneous MCF configurations. It is observed from the analysis that in Configuration 1, crosstalk level is lowest and the rate of decrease in the crosstalk with respect to the core pitch is highest compared to the other configurations of heterogeneous MCF. The values of crosstalk obtained analytically have been validated by comparing it with the values obtained from finite element method (FEM) based numerical simulation results. Further, we have investigated the impact of a fixed percent change (5%) in the core parameters (radius and/or R.I.) of one of the core of a homogeneous MCF, to realize the different heterogeneous MCF configurations, on the variations in crosstalk levels, difference in the mode effective refractive index of the core 1 and core 2 ($\Delta {n}_{eff}={n}_{eff1}-{n}_{eff2}$), and the peak bending radius (${R}_{pk}$). For the same percent variations (5%) in the core parameters (radius and/or R.I.) of different configurations of cores (Config. 1-Config. 3), Config. 1 MCF has highest variation in $\Delta {n}_{eff}$ value compared to other configurations of MCF. Further, this highest variation in $\Delta {n}_{eff}$ value of Config. 1 MCF results in smallest peak bending radius. The smaller value of peak bending radius allows MCF to bend into smaller radius. Therefore, Configuration 1 is the potential choice for the design of MCF with smaller peak bending radius and ultra-low crosstalk level compared to the other configurations of SI-heterogeneous MCF.


2020 ◽  
Vol 1484 ◽  
pp. 012009
Author(s):  
Nurul Shuhada Tan Halid ◽  
Suzairi Daud ◽  
Siti Nur Aizatti Rohizad ◽  
Esmafatinsyafiqa Multar ◽  
Abdull Rahim Mohd Yusoff

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1964
Author(s):  
Sławomir Cięszczyk ◽  
Piotr Kisała ◽  
Janusz Mroczka

Tilted fiber Bragg grating (TFBG) is a very popular fiber optic element that is used as a sensor for various physical quantities. The calculation of the refractive index of a substance surrounding the TFBG is based on its spectrum demodulation, which consists of determining a certain parameter that is correlated with the sought quantity. The most commonly used parameter is the area created by the maxima and minima of the cladding mode resonances. In this article, we propose a new group of methods, which are based on calculating the parameters related to the spectrum differences between the local average values in the range of occurrence of the cladding modes. The basic parameter used in this group of methods is the mean absolute deviation from the local mean, which is characterized by the best linearity among the considered group of methods. The calculated parameters, in their cumulative form, can also be used to determine the cut-off wavelength, which can also indirectly indicate the refractive index value. The proposed approaches were compared, in terms of measurement resolution, to the most commonly used methods, such as the cladding modes’ envelope area and the spectral contour lengths.


Author(s):  
Evgeniya Mikhailovna Popova ◽  
Guzel Mukhtarovna Guseinova ◽  
Sergei Borisovich Milov

The deficit of subnational budgets and deceleration capital investments in multiple Russian regions increase the relevance of research aimed at improvement of tax incentivizing practice of the regional investment process. The studies focused on determination of the impact of socioeconomic and institutional factors upon the efficiency of investment tax expenses obtained wide circulation within the foreign scientific literature. The subject of this article is the assessment of sensitivity of the efficiency of regional tax expanses towards investment attractiveness of the types of economic activity carried out by the residents of territories of advanced socioeconomic development, created in the subjects of Far Easter Federal District. The scientific novelty and practical values of this research consists in substantiation of the reasonableness of assessment of investment attractiveness of the types of economic activity that are stimulated by tax incentives. Methodology for assessing investment attractiveness is proposed and tested. The conclusion is made that in case of low investment attractiveness of the type of economic activity, which was planned to support by tax incentives, it is required to conduct and additional analysis to avoid unjustified tax expanses.


Sign in / Sign up

Export Citation Format

Share Document