scholarly journals Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7873
Author(s):  
Marah Trabelsi ◽  
Al Mamun ◽  
Michaela Klöcker ◽  
Imane Moulefera ◽  
Anton Pljonkin ◽  
...  

Electrospinning enables simple and cost-effective production of magnetic nanofibers by adding nanoparticles to a polymer solution. In order to increase the electrical conductivity of such nanofibers, the carbonization process is crucial. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite were investigated. In our previous studies, PAN/magnetite nanofiber mats were carbonized at 500 °C, 600 °C, and 800 °C. Here, PAN/magnetite nanofiber mats were carbonized at 1000 °C. The surface morphology of these PAN/magnetite nanofiber mats is not significantly different from nanofiber mats thermally treated at 800 °C and have remained relatively flexible at 1000 °C, which can be advantageous for various application fields. The addition of nanoparticles increased the average fiber diameter compared to pure PAN nanofiber mats and improved the dimensional stability during thermal processes. The high conductivity, the high magnetization properties, as well as shielding against electromagnetic interference of such carbonized nanofibers can be proposed for use in single photon avalanche diode (SPAD), where these properties are advantageous.

2021 ◽  
Vol 6 (1) ◽  
pp. 76
Author(s):  
Marah Trabelsi ◽  
Al Mamun ◽  
Michaela Klöcker ◽  
Lilia Sabantina

Magnetic nanofibers can be fabricated by adding nanoparticles in polymer solution using electrospinning method. The advantages of such nanofibers include a large surface-to-volume ratio and high porosity, which makes them promising for sensing applications. In addition, carbonization of such nanofibers increases electrical conductivity. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite and carbonized at 500 °C, 600 °C, 800 °C, and 1000 °C were measured. Resulting surface morphologies with some agglomerations are discussed. Addition of nanoparticles increased average fiber diameter and improved dimensional stability.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


2013 ◽  
Author(s):  
Dong Huang ◽  
Rong-xia Zhu ◽  
Si-yang Liu ◽  
Wei-feng Sun ◽  
Jin Wu ◽  
...  

2011 ◽  
Author(s):  
Justin A. Richardson ◽  
Eric A. G. Webster ◽  
Lindsay A. Grant ◽  
Robert K. Henderson

Sign in / Sign up

Export Citation Format

Share Document