scholarly journals Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8277
Author(s):  
Chaoyu Wang ◽  
Wanwan Hu ◽  
Zhe Geng ◽  
Jindong Zhang ◽  
Daiyin Zhu

By repeatedly sampling, storing, and retransmitting parts of the radar signal, interrupted sampling repeater jamming (ISRJ) based on digital radio frequency memory (DRFM) can produce a train of secondary false targets symmetrical to the main false target, threatening to mislead or deceive the victim radar system. This paper proposes a computationally-effective method to estimating the parameters for ISRJ by resorting to the framework of alternating direction method of multipliers (ADMM). Firstly, the analytical form of pulse compression is derived. Then, for the purpose of estimating the parameters of ISRJ, the original problem is transformed into a nonlinear integer optimization model with respect to a window vector. On this basis, the ADMM is introduced to decompose the nonlinear integer optimization model into a series of sub-problems to estimate the width and number of ISRJ’s sample slices. Finally, the numerical simulation results show that, compared with the traditional time-frequency (TF) method, the proposed method exhibits much better performance in accuracy and stability.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zijian Wang ◽  
Wenbo Yu ◽  
Zhongjun Yu ◽  
Yunhua Luo ◽  
Jiamu Li

Interrupted-sampling repeater jamming (ISRJ) is a new type of DRFM-based jamming designed for linear frequency modulation (LFM) signals. By intercepting the radar signal slice and retransmitting it many times, ISRJ can obtain radar coherent processing gain so that multiple false target groups can be formed after pulse compression (PC). According to the distribution characteristic of the echo signal and the coherence of ISRJ to radar signal, a new method for ISRJ suppression is proposed in this study. In this method, the position of the real target is determined using a gated recurrent unit neural network (GRU-Net), and the real target can be, therefore, reconstructed by adaptive filtering in the sparse representation of the echo signal based on the target locating result. The reconstruction result contains only the real target, and the false target groups formed by ISRJ are suppressed completely. The target locating accuracy of the proposed GRU-Net can reach 92.75%. Simulations have proved the effectiveness of the proposed method.


2011 ◽  
Vol 30 (6) ◽  
pp. 1350-1353 ◽  
Author(s):  
Jian-cheng Liu ◽  
Xue-song Wang ◽  
Zhong Liu ◽  
Jian-hua Yang ◽  
Guo-yu Wang

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


2021 ◽  
Vol 13 (6) ◽  
pp. 1064
Author(s):  
Zhangjing Wang ◽  
Xianhan Miao ◽  
Zhen Huang ◽  
Haoran Luo

The development of autonomous vehicles and unmanned aerial vehicles has led to a current research focus on improving the environmental perception of automation equipment. The unmanned platform detects its surroundings and then makes a decision based on environmental information. The major challenge of environmental perception is to detect and classify objects precisely; thus, it is necessary to perform fusion of different heterogeneous data to achieve complementary advantages. In this paper, a robust object detection and classification algorithm based on millimeter-wave (MMW) radar and camera fusion is proposed. The corresponding regions of interest (ROIs) are accurately calculated from the approximate position of the target detected by radar and cameras. A joint classification network is used to extract micro-Doppler features from the time-frequency spectrum and texture features from images in the ROIs. A fusion dataset between radar and camera is established using a fusion data acquisition platform and includes intersections, highways, roads, and playgrounds in schools during the day and at night. The traditional radar signal algorithm, the Faster R-CNN model and our proposed fusion network model, called RCF-Faster R-CNN, are evaluated in this dataset. The experimental results indicate that the mAP(mean Average Precision) of our network is up to 89.42% more accurate than the traditional radar signal algorithm and up to 32.76% higher than Faster R-CNN, especially in the environment of low light and strong electromagnetic clutter.


2014 ◽  
Vol 556-562 ◽  
pp. 1618-1621
Author(s):  
Jia Liang Fan ◽  
Qiang Yang

Most radar systems based on the structure that contains many DSP chips. The system structure is always complex, and it is difficult to update. Nowadays, multi-core processor develops very fast. Compared with DSP chips, multi-core processor has better performance in signal processing field. In this paper, we present a signal processing architecture which based on multi-core processor. Pulse compression algorithms and PCI-E bus are discussed as two important technologies. Adaptive beamforming test results show that multi-core processor is able to achieve radar signal processing.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ziyan Luo ◽  
Xiaoyu Li ◽  
Naihua Xiu

In this paper, we propose a sparse optimization approach to maximize the utilization of regenerative energy produced by braking trains for energy-efficient timetabling in metro railway systems. By introducing the cardinality function and the square of the Euclidean norm function as the objective function, the resulting sparse optimization model can characterize the utilization of the regenerative energy appropriately. A two-stage alternating direction method of multipliers is designed to efficiently solve the convex relaxation counterpart of the original NP-hard problem and then to produce an energy-efficient timetable of trains. The resulting approach is applied to Beijing Metro Yizhuang Line with different instances of service for case study. Comparison with the existing two-step linear program approach is also conducted which illustrates the effectiveness of our proposed sparse optimization model in terms of the energy saving rate and the efficiency of our numerical optimization algorithm in terms of computational time.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5569 ◽  
Author(s):  
Lesya Anishchenko ◽  
Andrey Zhuravlev ◽  
Margarita Chizh

A lack of effective non-contact methods for automatic fall detection, which may result in the development of health and life-threatening conditions, is a great problem of modern medicine, and in particular, geriatrics. The purpose of the present work was to investigate the advantages of utilizing a multi-bioradar system in the accuracy of remote fall detection. The proposed concept combined usage of wavelet transform and deep learning to detect fall episodes. The continuous wavelet transform was used to get a time-frequency representation of the bio-radar signal and use it as input data for a pre-trained convolutional neural network AlexNet adapted to solve the problem of detecting falls. Processing of the experimental results showed that the designed multi-bioradar system can be used as a simple and view-independent approach implementing a non-contact fall detection method with an accuracy and F1-score of 99%.


Sign in / Sign up

Export Citation Format

Share Document