scholarly journals Performance Analyses of a RAIM Algorithm for Kalman Filter with GPS and NavIC Constellations

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8441
Author(s):  
Susmita Bhattacharyya

This paper evaluates the performance of an integrity monitoring algorithm of global navigation satellite systems (GNSS) for the Kalman filter (KF), termed KF receiver autonomous integrity monitoring (RAIM). The algorithm checks measurement inconsistencies in the range domain and requires Schmidt KF (SKF) as the navigation processor. First, realistic carrier-smoothed pseudorange measurement error models of GNSS are integrated into KF RAIM, overcoming an important limitation of prior work. More precisely, the error covariance matrix for fault detection is modified to capture the temporal variations of individual errors with different time constants. Uncertainties of the model parameters are also taken into account. Performance of the modified KF RAIM is then analyzed with the simulated signals of the global positioning system and navigation with Indian constellation for different phases of aircraft flight. Weighted least squares (WLS) RAIM used for comparison purposes is shown to have lower protection levels. This work, however, is important because KF-based integrity monitors are required to ensure the reliability of advanced navigation methods, such as multi-sensor integration and vector receivers. A key finding of the performance analyses is as follows. Innovation-based tests with an extended KF navigation processor confuse slow ramp faults with residual measurement errors that the filter estimates, leading to missed detection. RAIM with SKF, on the other hand, can successfully detect such faults. Thus, it offers a promising solution to developing KF integrity monitoring algorithms in the range domain. The modified KF RAIM completes processing in time on a low-end computer. Some salient features are also studied to gain insights into its working principles.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7374
Author(s):  
João Manito ◽  
José Sanguino

With the increase in the widespread use of Global Navigation Satellite Systems (GNSS), increasing numbers of applications require precise position data. Of all the GNSS positioning methods, the most precise are those that are based in differential systems, such as Differential GNSS (DGNSS) and Real-Time Kinematics (RTK). However, for absolute positioning, the precision of these methods is tied to their reference position estimates. With the goal of quickly auto-surveying the position of a base station receiver, four positioning methods are analyzed and compared, namely Least Squares (LS), Weighted Least Squares (WLS), Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), using only pseudorange measurements, as well as the Hatch Filter and position thresholding. The research results show that the EKF and UKF present much better mean errors than LS and WLS, with an attained precision below 1 m after about 4 h of auto-surveying. The methods that presented the best results are then tested against existing implementations, showing them to be very competitive, especially considering the differences between the used receivers. Finally, these results are used in a DGNSS test, which verifies a significant improvement in the position estimate as the base station position estimate improves.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6606
Author(s):  
Susmita Bhattacharyya ◽  
Dinesh Mute

This paper presents a novel Kalman filter (KF)-based receiver autonomous integrity monitoring (RAIM) algorithm for reliable aircraft positioning with global navigation satellite systems (GNSS). The presented method overcomes major limitations of the authors’ previous work, and uses two GNSS, namely, Navigation with Indian Constellation (NavIC) of India and the Global Positioning System (GPS). The algorithm is developed in the range domain and compared with two existing approaches—one each for the weighted least squares navigation filter and KF. Extensive simulations were carried out for an unmanned aircraft flight path over the Indian sub-continent for validation of the new approach. Although both existing methods outperform the new one, the work is significant for the following reasons. KF is an integral part of advanced navigation systems that can address frequent loss of GNSS signals (e.g., vector tracking and multi-sensor integration). Developing KF RAIM algorithms is essential to ensuring their reliability. KF solution separation (or position domain) RAIM offers good performance at the cost of high computational load. Presented range domain KF RAIM, on the other hand, offers satisfactory performance to a certain extent, eliminating a major issue of growing position error bounds over time. It requires moderate computational resources, and hence, shows promise for real-time implementations in avionics. Simulation results also indicate that addition of NavIC alongside GPS can substantially improve RAIM performance, particularly in poor geometries.


Author(s):  
Giampiero Sindoni ◽  
Claudio Paris ◽  
Cristian Vendittozzi ◽  
Erricos C. Pavlis ◽  
Ignazio Ciufolini ◽  
...  

Satellite Laser Ranging (SLR) makes an important contribution to Earth science providing the most accurate measurement of the long-wavelength components of Earth’s gravity field, including their temporal variations. Furthermore, SLR data along with those from the other three geometric space techniques, Very Long Baseline Interferometry (VLBI), Global Navigation Satellite Systems (GNSS) and DORIS, generate and maintain the International Terrestrial Reference Frame (ITRF) that is used as a reference by all Earth Observing systems and beyond. As a result we obtain accurate station positions and linear velocities, a manifestation of tectonic plate movements important in earthquake studies and in geophysics in general. The “geodetic” satellites used in SLR are passive spheres characterized by very high density, with little else than gravity perturbing their orbits. As a result they define a very stable reference frame, defining primarily and uniquely the origin of the ITRF, and in equal shares, its scale. The ITRF is indeed used as “the” standard to which we can compare regional, GNSS-derived and alternate frames. The melting of global icecaps, ocean and atmospheric circulation, sea-level change, hydrological and internal Earth-mass redistribution are nowadays monitored using satellites. The observations and products of these missions are geolocated and referenced using the ITRF. This allows scientists to splice together records from various missions sometimes several years apart, to generate useful records for monitoring geophysical processes over several decades. The exchange of angular momentum between the atmosphere and solid Earth for example is measured and can be exploited for monitoring global change. LARES, an Italian Space Agency (ASI) satellite, is the latest geodetic satellite placed in orbit. Its main contribution is in the area of geodesy and the definition of the ITRF in particular and this presentation will discuss the improvements it will make in the aforementioned areas.


2020 ◽  
Vol 73 (5) ◽  
pp. 1087-1105
Author(s):  
Yawei Zhai ◽  
Jaymin Patel ◽  
Xingqun Zhan ◽  
Mathieu Joerger ◽  
Boris Pervan

This paper describes a method to determine global navigation satellite systems (GNSS) satellite orbits and clocks for advanced receiver autonomous integrity monitoring (ARAIM). The orbit and clock estimates will be used as a reference truth to monitor signal-in-space integrity parameters of the ARAIM integrity support message (ISM). Unlike publicly available orbit and clock products, which aim to maximise estimation accuracy, a straightforward and transparent approach is employed to facilitate integrity evaluation. The proposed monitor is comprised of a worldwide network of sparsely distributed reference stations and will employ parametric satellite orbit models. Two separate analyses, covariance analysis and model fidelity evaluation, are carried out to assess the impact of measurement errors and orbit model uncertainty on the estimated orbits and clocks, respectively. The results indicate that a standard deviation of 30 cm can be achieved for the estimated orbit/clock error, which is adequate for ISM validation.


2020 ◽  
pp. 1-13
Author(s):  
Eduardo P. Macho ◽  
Sergio V.D. Pamboukian ◽  
Emília Correia

Geolocal is a new navigation system conceived and patented in Brazil, whose purpose is to be independent of other global navigation satellite systems (GNSS). It has an ‘inverted-GNSS’ configuration with at least four bases on the ground at known geodesic position coordinates and a repeater in space. Simulations were performed to determine the precision of Geolocal using different quantities and distributions of bases. They showed that this precision is enhanced when the quantity of bases increases, as long as the elevation angles of the new bases included are higher than the average and when the bases are evenly distributed around the repeater, but mainly when the time delay at the repeater is known in advance and when the measurement errors that generate uncertainties are reduced. The position dilution of precision (PDOP) was also calculated, confirming that precision is enhanced by the quantity of bases and by their distribution.


Robotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Oguz Kagan Isik ◽  
Juhyeon Hong ◽  
Ivan Petrunin ◽  
Antonios Tsourdos

The increasing use of Unmanned Aerial Vehicles (UAVs) in safety-critical missions in both civilian and military areas demands accurate and reliable navigation, where one of the key sources of navigation information is presented by Global Navigation Satellite Systems (GNSS). In challenging conditions, for example, in urban areas, the accuracy of GNSS-based navigation may degrade significantly due to user-satellite geometry and obscuration issues without being noticed by the user. Therefore, considering the essentially dynamic rate of change in this type of environment, integrity monitoring is of critical importance for understanding the level of trust we have in positioning and timing data. In this paper, the dilution of precision (DOP) coefficients under nominal and challenging conditions were investigated for the purpose of integrity monitoring in urban environments. By analyzing positioning information in a simulated urban environment using a software-based GNSS receiver, the integrity monitoring approach based on joint consideration of GNSS observables and environmental parameters has been proposed. It was shown that DOP coefficients, when considered together with a number of visible satellites and cut-off elevations specific to the urban environment carry valuable integrity information that is difficult to get using existing integrity monitoring approaches. This has allowed generating indirect integrity measures based on cut-off elevation and satellite visibility that can be used for UAV path planning and guidance in urban environments.


2012 ◽  
Vol 482-484 ◽  
pp. 75-80
Author(s):  
Yong Jiang ◽  
You Xiang Cui ◽  
Bu Feng Li

Position on the planet has always been vitally important to human beings and today our exact position is something that we can obtain with ease. Among the most stunning technological developments in recent years have been the immense advances in the realm of satellite navigation or Global Navigation Satellite Systems (GNSS) technologies. There are various causes of measurement error. The precision of positioning with GPS navigation depends on the one hand on the precision of the individual pseudorange measurements and on the other hand on the geometric configuration of the satellites used. In order to achieve an accuracy of one meter or better, additional measures are necessary. Reducing the effect of measurement errors can considerably increase the positioning accuracy. Differential GPS (DGPS) is a method for reducing the measurement error of GNNS.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cécile Ducrocq ◽  
Halldór Geirsson ◽  
Thóra Árnadóttir ◽  
Daniel Juncu ◽  
Vincent Drouin ◽  
...  

Non-eruptive uplift and subsidence episodes remain a challenge for monitoring and hazard assessments in active volcanic systems worldwide. Sources of such deformation may relate to processes such as magma inflow and outflow, motion and phase changes of hydrothermal fluids or magma volatiles, heat transfer from magmatic bodies and heat-mining from geothermal extraction. The Hengill area, in southwest Iceland, hosts two active volcanic systems, Hengill and Hrómundartindur, and two high-temperature geothermal power plants, Hellisheiði and Nesjavellir. Using a combination of geodetic data sets (GNSS and InSAR; Global Navigation Satellite Systems and Interferometry Synthetic Aperture Radar, respectively) and a non-linear inversion scheme to estimate the optimal analytical model parameters, we investigate the ground deformation between 2017–2018. Due to other ongoing deformation processes in the area, such as plate motion, subsidence in the two geothermal production fields, and deep-seated source of contraction since 2006, we estimate 2017–2018 difference velocities by subtracting background deformation, determined from data spanning 2015–2017 (InSAR) or 2009–2017 (GNSS). This method highlights changes in ground deformation observed in 2017–2018 compared to prior years: uplift signal of ∼10 km diameter located in the eastern part of the Hengill area, and geothermal production-related temporal changes in deformation near Húsmúli, in the western part of the Hengill area. We find an inflation source located between the Hengill and Hrómundartindur volcanic complexes, lasting for ∼5 months, with a maximum uplift of ∼12 mm. Our model inversions give a source at depth of ∼6–7 km, located approximately in the same crustal volume as an inferred contracting source in 2006–2017, within the local brittle-ductile transition zone. No significant changes were observed in local seismicity, borehole temperatures and pressures during the uplift episode. These transient inflation and deflation sources are located ∼3 km NW from a source of non-eruptive uplift in the area (1993–1999). We consider possible magmatic and hydrothermal processes as the causes for these inflation-deflation episodes and conclude that further geophysical and geological studies are needed to better understand such episodes.


2011 ◽  
Vol 64 (4) ◽  
pp. 695-710 ◽  
Author(s):  
Wolfgang Schuster ◽  
Washington Ochieng

Future air navigation envisages increased use of Global Navigation Satellite Systems (GNSS) together with advanced communications and surveillance technologies to facilitate the required increase in capacity, efficiency and safety without adversely impacting the environment. The full benefit of GNSS is expected from its ability to support en-route to en-route or gate-to-gate air navigation. This presents challenges particularly for the phases of flight with stringent required navigation performance. Significant work has so far been devoted to the phases of flight up to CAT I. However, more work is required for CAT III precision landing (with an accuracy requirement at the metre level) and taxiing (with an accuracy requirement at sub-metre level) and both with very high integrity and continuity requirements. The main limitation in using GBAS for CAT III landings is the potential decorrelation of the measurement errors between the GBAS ground station (GGS) and the user. The threats in this respect are the atmospheric anomalies. Periods of strong solar activity can cause large local spatial and temporal gradients in the delays induced on the GNSS signals by the ionosphere. The local nature of the effects results in significant decorrelation between GGS measurements and the user. Therefore, a reliable ground based ionospheric anomaly monitoring scheme is required to guarantee integrity.This paper critically reviews state-of-the-art monitors, identifies their limitations and addresses them by proposing a high-performance monitoring scheme for the ionosphere. Preliminary analyses suggest that the proposed scheme has the potential to enable GNSS to meet the navigation requirements for CAT III and taxiing.


Sign in / Sign up

Export Citation Format

Share Document