scholarly journals Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 211
Author(s):  
Umme Zakia ◽  
Carlo Menon

Estimating applied force using force myography (FMG) technique can be effective in human-robot interactions (HRI) using data-driven models. A model predicts well when adequate training and evaluation are observed in same session, which is sometimes time consuming and impractical. In real scenarios, a pretrained transfer learning model predicting forces quickly once fine-tuned to target distribution would be a favorable choice and hence needs to be examined. Therefore, in this study a unified supervised FMG-based deep transfer learner (SFMG-DTL) model using CNN architecture was pretrained with multiple sessions FMG source data (Ds, Ts) and evaluated in estimating forces in separate target domains (Dt, Tt) via supervised domain adaptation (SDA) and supervised domain generalization (SDG). For SDA, case (i) intra-subject evaluation (Ds ≠ Dt-SDA, Ts ≈ Tt-SDA) was examined, while for SDG, case (ii) cross-subject evaluation (Ds ≠ Dt-SDG, Ts ≠ Tt-SDG) was examined. Fine tuning with few “target training data” calibrated the model effectively towards target adaptation. The proposed SFMG-DTL model performed better with higher estimation accuracies and lower errors (R2 ≥ 88%, NRMSE ≤ 0.6) in both cases. These results reveal that interactive force estimations via transfer learning will improve daily HRI experiences where “target training data” is limited, or faster adaptation is required.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Jae Kim ◽  
Jang Pyo Bae ◽  
Jun-Won Chung ◽  
Dong Kyun Park ◽  
Kwang Gi Kim ◽  
...  

AbstractWhile colorectal cancer is known to occur in the gastrointestinal tract. It is the third most common form of cancer of 27 major types of cancer in South Korea and worldwide. Colorectal polyps are known to increase the potential of developing colorectal cancer. Detected polyps need to be resected to reduce the risk of developing cancer. This research improved the performance of polyp classification through the fine-tuning of Network-in-Network (NIN) after applying a pre-trained model of the ImageNet database. Random shuffling is performed 20 times on 1000 colonoscopy images. Each set of data are divided into 800 images of training data and 200 images of test data. An accuracy evaluation is performed on 200 images of test data in 20 experiments. Three compared methods were constructed from AlexNet by transferring the weights trained by three different state-of-the-art databases. A normal AlexNet based method without transfer learning was also compared. The accuracy of the proposed method was higher in statistical significance than the accuracy of four other state-of-the-art methods, and showed an 18.9% improvement over the normal AlexNet based method. The area under the curve was approximately 0.930 ± 0.020, and the recall rate was 0.929 ± 0.029. An automatic algorithm can assist endoscopists in identifying polyps that are adenomatous by considering a high recall rate and accuracy. This system can enable the timely resection of polyps at an early stage.


2020 ◽  
Vol 13 (1) ◽  
pp. 23
Author(s):  
Wei Zhao ◽  
William Yamada ◽  
Tianxin Li ◽  
Matthew Digman ◽  
Troy Runge

In recent years, precision agriculture has been researched to increase crop production with less inputs, as a promising means to meet the growing demand of agriculture products. Computer vision-based crop detection with unmanned aerial vehicle (UAV)-acquired images is a critical tool for precision agriculture. However, object detection using deep learning algorithms rely on a significant amount of manually prelabeled training datasets as ground truths. Field object detection, such as bales, is especially difficult because of (1) long-period image acquisitions under different illumination conditions and seasons; (2) limited existing prelabeled data; and (3) few pretrained models and research as references. This work increases the bale detection accuracy based on limited data collection and labeling, by building an innovative algorithms pipeline. First, an object detection model is trained using 243 images captured with good illimitation conditions in fall from the crop lands. In addition, domain adaptation (DA), a kind of transfer learning, is applied for synthesizing the training data under diverse environmental conditions with automatic labels. Finally, the object detection model is optimized with the synthesized datasets. The case study shows the proposed method improves the bale detecting performance, including the recall, mean average precision (mAP), and F measure (F1 score), from averages of 0.59, 0.7, and 0.7 (the object detection) to averages of 0.93, 0.94, and 0.89 (the object detection + DA), respectively. This approach could be easily scaled to many other crop field objects and will significantly contribute to precision agriculture.


Author(s):  
Wen Xu ◽  
Jing He ◽  
Yanfeng Shu

Transfer learning is an emerging technique in machine learning, by which we can solve a new task with the knowledge obtained from an old task in order to address the lack of labeled data. In particular deep domain adaptation (a branch of transfer learning) gets the most attention in recently published articles. The intuition behind this is that deep neural networks usually have a large capacity to learn representation from one dataset and part of the information can be further used for a new task. In this research, we firstly present the complete scenarios of transfer learning according to the domains and tasks. Secondly, we conduct a comprehensive survey related to deep domain adaptation and categorize the recent advances into three types based on implementing approaches: fine-tuning networks, adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we discuss the details of these methods and introduce some typical real-world applications. Finally, we conclude our work and explore some potential issues to be further addressed.


2020 ◽  
Vol 27 (4) ◽  
pp. 584-591 ◽  
Author(s):  
Chen Lin ◽  
Steven Bethard ◽  
Dmitriy Dligach ◽  
Farig Sadeque ◽  
Guergana Savova ◽  
...  

Abstract Introduction Classifying whether concepts in an unstructured clinical text are negated is an important unsolved task. New domain adaptation and transfer learning methods can potentially address this issue. Objective We examine neural unsupervised domain adaptation methods, introducing a novel combination of domain adaptation with transformer-based transfer learning methods to improve negation detection. We also want to better understand the interaction between the widely used bidirectional encoder representations from transformers (BERT) system and domain adaptation methods. Materials and Methods We use 4 clinical text datasets that are annotated with negation status. We evaluate a neural unsupervised domain adaptation algorithm and BERT, a transformer-based model that is pretrained on massive general text datasets. We develop an extension to BERT that uses domain adversarial training, a neural domain adaptation method that adds an objective to the negation task, that the classifier should not be able to distinguish between instances from 2 different domains. Results The domain adaptation methods we describe show positive results, but, on average, the best performance is obtained by plain BERT (without the extension). We provide evidence that the gains from BERT are likely not additive with the gains from domain adaptation. Discussion Our results suggest that, at least for the task of clinical negation detection, BERT subsumes domain adaptation, implying that BERT is already learning very general representations of negation phenomena such that fine-tuning even on a specific corpus does not lead to much overfitting. Conclusion Despite being trained on nonclinical text, the large training sets of models like BERT lead to large gains in performance for the clinical negation detection task.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2639
Author(s):  
Quan T. Ngo ◽  
Seokhoon Yoon

Facial expression recognition (FER) is a challenging problem in the fields of pattern recognition and computer vision. The recent success of convolutional neural networks (CNNs) in object detection and object segmentation tasks has shown promise in building an automatic deep CNN-based FER model. However, in real-world scenarios, performance degrades dramatically owing to the great diversity of factors unrelated to facial expressions, and due to a lack of training data and an intrinsic imbalance in the existing facial emotion datasets. To tackle these problems, this paper not only applies deep transfer learning techniques, but also proposes a novel loss function called weighted-cluster loss, which is used during the fine-tuning phase. Specifically, the weighted-cluster loss function simultaneously improves the intra-class compactness and the inter-class separability by learning a class center for each emotion class. It also takes the imbalance in a facial expression dataset into account by giving each emotion class a weight based on its proportion of the total number of images. In addition, a recent, successful deep CNN architecture, pre-trained in the task of face identification with the VGGFace2 database from the Visual Geometry Group at Oxford University, is employed and fine-tuned using the proposed loss function to recognize eight basic facial emotions from the AffectNet database of facial expression, valence, and arousal computing in the wild. Experiments on an AffectNet real-world facial dataset demonstrate that our method outperforms the baseline CNN models that use either weighted-softmax loss or center loss.


Author(s):  
Pratiksha Bongale

Today’s world is mostly data-driven. To deal with the humongous amount of data, Machine Learning and Data Mining strategies are put into usage. Traditional ML approaches presume that the model is tested on a dataset extracted from the same domain from where the training data has been taken from. Nevertheless, some real-world situations require machines to provide good results with very little domain-specific training data. This creates room for the development of machines that are capable of predicting accurately by being trained on easily found data. Transfer Learning is the key to it. It is the scientific art of applying the knowledge gained while learning a task to another task that is similar to the previous one in some or another way. This article focuses on building a model that is capable of differentiating text data into binary classes; one roofing the text data that is spam and the other not containing spam using BERT’s pre-trained model (bert-base-uncased). This pre-trained model has been trained on Wikipedia and Book Corpus data and the goal of this paper is to highlight the pre-trained model’s capabilities to transfer the knowledge that it has learned from its training (Wiki and Book Corpus) to classifying spam texts from the rest.


2021 ◽  
Author(s):  
◽  
Muhammad Ghifary

<p>Machine learning has achieved great successes in the area of computer vision, especially in object recognition or classification. One of the core factors of the successes is the availability of massive labeled image or video data for training, collected manually by human. Labeling source training data, however, can be expensive and time consuming. Furthermore, a large amount of labeled source data may not always guarantee traditional machine learning techniques to generalize well; there is a potential bias or mismatch in the data, i.e., the training data do not represent the target environment.  To mitigate the above dataset bias/mismatch, one can consider domain adaptation: utilizing labeled training data and unlabeled target data to develop a well-performing classifier on the target environment. In some cases, however, the unlabeled target data are nonexistent, but multiple labeled sources of data exist. Such situations can be addressed by domain generalization: using multiple source training sets to produce a classifier that generalizes on the unseen target domain. Although several domain adaptation and generalization approaches have been proposed, the domain mismatch in object recognition remains a challenging, open problem – the model performance has yet reached to a satisfactory level in real world applications.  The overall goal of this thesis is to progress towards solving dataset bias in visual object recognition through representation learning in the context of domain adaptation and domain generalization. Representation learning is concerned with finding proper data representations or features via learning rather than via engineering by human experts. This thesis proposes several representation learning solutions based on deep learning and kernel methods.  This thesis introduces a robust-to-noise deep neural network for handwritten digit classification trained on “clean” images only, which we name Deep Hybrid Network (DHN). DHNs are based on a particular combination of sparse autoencoders and restricted Boltzmann machines. The results show that DHN performs better than the standard deep neural network in recognizing digits with Gaussian and impulse noise, block and border occlusions.  This thesis proposes the Domain Adaptive Neural Network (DaNN), a neural network based domain adaptation algorithm that minimizes the classification error and the domain discrepancy between the source and target data representations. The experiments show the competitiveness of DaNN against several state-of-the-art methods on a benchmark object dataset.  This thesis develops the Multi-task Autoencoder (MTAE), a domain generalization algorithm based on autoencoders trained via multi-task learning. MTAE learns to transform the original image into its analogs in multiple related domains simultaneously. The results show that the MTAE’s representations provide better classification performance than some alternative autoencoder-based models as well as the current state-of-the-art domain generalization algorithms.  This thesis proposes a fast kernel-based representation learning algorithm for both domain adaptation and domain generalization, Scatter Component Analysis (SCA). SCA finds a data representation that trades between maximizing the separability of classes, minimizing the mismatch between domains, and maximizing the separability of the whole data points. The results show that SCA performs much faster than some competitive algorithms, while providing state-of-the-art accuracy in both domain adaptation and domain generalization.  Finally, this thesis presents the Deep Reconstruction-Classification Network (DRCN), a deep convolutional network for domain adaptation. DRCN learns to classify labeled source data and also to reconstruct unlabeled target data via a shared encoding representation. The results show that DRCN provides competitive or better performance than the prior state-of-the-art model on several cross-domain object datasets.</p>


2019 ◽  
Vol 26 (4) ◽  
pp. 383-411
Author(s):  
Heike Adel ◽  
Francine Chen ◽  
Yan-Ying Chen

AbstractTwitter and other social media platforms are often used for sharing interest in products. The identification of purchase decision stages, such as in the AIDA model (Awareness, Interest, Desire, and Action), can enable more personalized e-commerce services and a finer-grained targeting of advertisements than predicting purchase intent only. In this paper, we propose and analyze neural models for identifying the purchase stage of single tweets in a user’s tweet sequence. In particular, we identify three challenges of purchase stage identification: imbalanced label distribution with a high number of non-purchase-stage instances, limited amount of training data, and domain adaptation with no or only little target domain data. Our experiments reveal that the imbalanced label distribution is the main challenge for our models. We address it with ranking loss and perform detailed investigations of the performance of our models on the different output classes. In order to improve the generalization of the models and augment the limited amount of training data, we examine the use of sentiment analysis as a complementary, secondary task in a multitask framework. For applying our models to tweets from another product domain, we consider two scenarios: for the first scenario without any labeled data in the target product domain, we show that learning domain-invariant representations with adversarial training is most promising, while for the second scenario with a small number of labeled target examples, fine-tuning the source model weights performs best. Finally, we conduct several analyses, including extracting attention weights and representative phrases for the different purchase stages. The results suggest that the model is learning features indicative of purchase stages and that the confusion errors are sensible.


This research is aimed to achieve high-precision accuracy and for face recognition system. Convolution Neural Network is one of the Deep Learning approaches and has demonstrated excellent performance in many fields, including image recognition of a large amount of training data (such as ImageNet). In fact, hardware limitations and insufficient training data-sets are the challenges of getting high performance. Therefore, in this work the Deep Transfer Learning method using AlexNet pre-trained CNN is proposed to improve the performance of the face-recognition system even for a smaller number of images. The transfer learning method is used to fine-tuning on the last layer of AlexNet CNN model for new classification tasks. The data augmentation (DA) technique also proposed to minimize the over-fitting problem during Deep transfer learning training and to improve accuracy. The results proved the improvement in over-fitting and in performance after using the data augmentation technique. All the experiments were tested on UTeMFD, GTFD, and CASIA-Face V5 small data-sets. As a result, the proposed system achieved a high accuracy as 100% on UTeMFD, 96.67% on GTFD, and 95.60% on CASIA-Face V5 in less than 0.05 seconds of recognition time.


2021 ◽  
Author(s):  
Geoffrey F. Schau ◽  
Hassan Ghani ◽  
Erik A. Burlingame ◽  
Guillaume Thibault ◽  
Joe W. Gray ◽  
...  

AbstractAccurate diagnosis of metastatic cancer is essential for prescribing optimal control strategies to halt further spread of metastasizing disease. While pathological inspection aided by immunohistochemistry staining provides a valuable gold standard for clinical diagnostics, deep learning methods have emerged as powerful tools for identifying clinically relevant features of whole slide histology relevant to a tumor’s metastatic origin. Although deep learning models require significant training data to learn effectively, transfer learning paradigms provide mechanisms to circumvent limited training data by first training a model on related data prior to fine-tuning on smaller data sets of interest. In this work we propose a transfer learning approach that trains a convolutional neural network to infer the metastatic origin of tumor tissue from whole slide images of hematoxylin and eosin (H&E) stained tissue sections and illustrate the advantages of pre-training network on whole slide images of primary tumor morphology. We further characterize statistical dissimilarity between primary and metastatic tumors of various indications on patch-level images to highlight limitations of our indication-specific transfer learning approach. Using a primary-to-metastatic transfer learning approach, we achieved mean class-specific areas under receiver operator characteristics curve (AUROC) of 0.779, which outperformed comparable models trained on only images of primary tumor (mean AUROC of 0.691) or trained on only images of metastatic tumor (mean AUROC of 0.675), supporting the use of large scale primary tumor imaging data in developing computer vision models to characterize metastatic origin of tumor lesions.


Sign in / Sign up

Export Citation Format

Share Document