scholarly journals Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

Sensors ◽  
2009 ◽  
Vol 9 (4) ◽  
pp. 2371-2388 ◽  
Author(s):  
Lammert Kooistra ◽  
Aldo Bergsma ◽  
Beatus Chuma ◽  
Sytze De Bruin
Author(s):  
S. Jutz ◽  
M.P. Milagro-Pérez

<span>The European Union-led Copernicus programme, born with the aim of developing space-based global environmental monitoring services to ensure a European autonomous capacity for Earth Observation, comprises a Space Component, Core Services, and In-situ measurements. The Space Component, coordinated by ESA, has seven Sentinel satellites in orbit, with further missions planned, and is complemented by contributing missions, in-situ sensors and numerical models, and delivers many terabytes of accurate climate and environmental data, free and open, every day to hundreds of thousands of users. This makes Copernicus the biggest provider of Earth Observation data in the world.</span>


2016 ◽  
Vol 12 (04) ◽  
pp. 68
Author(s):  
Alexandra Ribeiro ◽  
Vitor Sousa ◽  
Alberto Cardoso

This work describes a GIS web-based open source platform for wireless in situ geosensor data visualization and distributed geoprocessing. Emphasis is put on: i) visualization of sensor measurements and sensor location on a map; ii) geoprocessing of these data; iii) and, visualization of geoprocessing results on a map. The platform combines the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) standards, in particular the Sensor Observation Service (SOS), and the OGC Web Processing Service (WPS). Several results are presented using different methods of spatial interpolation of air temperature measurements as geoprocessing tasks.


Author(s):  
Karel Charvat ◽  
Vincent Onckelet ◽  
Hana Kubickova

Copernicus is Europe's space-based Earth monitoring asset, which consists of a complex set of systems that collect data from different sources: remote sensing satellites (RS) and in-situ sensors such as ground stations, airborne and marine sensors. This study was originally prepared for the needs of the Czech agricultural community, where we provided an in-depth analysis of articles related to Earth observation in precision agriculture. At a later stage, we extended this study by comparing the recommendations of the European EO4Agri project and scientific articles published in MDPI. We had two important objectives, one was to validate the results of the EO4Agri project and the other was to look for gaps in current research and community needs. To recognize the importance of using Sentinel 1 data, we also added a specific analysis of methods for data fusion of Sentinel 1 and Sentinel 2 data.


2020 ◽  
Vol 9 (10) ◽  
pp. 563
Author(s):  
Alejandro Zunino ◽  
Guillermo Velázquez ◽  
Juan Pablo Celemín ◽  
Cristian Mateos ◽  
Matías Hirsch ◽  
...  

Recent Web technologies such as HTML5, JavaScript, and WebGL have enabled powerful and highly dynamic Web mapping applications executing on standard Web browsers. Despite the complexity for developing such applications has been greatly reduced by Web mapping libraries, developers face many choices to achieve optimal performance and network usage. This scenario is even more complex when considering different representations of geographical data (raster, raw data or vector) and variety of devices (tablets, smartphones, and personal computers). This paper compares the performance and network usage of three popular JavaScript Web mapping libraries for implementing a Web map using different representations for geodata, and executing on different devices. In the experiments, Mapbox GL JS achieved the best overall performance on mid and high end devices for displaying raster or vector maps, while OpenLayers was the best for raster maps on all devices. Vector-based maps are a safe bet for new Web maps, since performance is on par with raster maps on mid-end smartphones, with significant less network bandwidth requirements.


2021 ◽  
Vol 265 ◽  
pp. 112684
Author(s):  
Leon T. Hauser ◽  
Joris Timmermans ◽  
Niels van der Windt ◽  
Ângelo F. Sil ◽  
Nuno César de Sá ◽  
...  

2021 ◽  
Author(s):  
Adrian Ringenbach ◽  
Peter Bebi ◽  
Perry Bartelt ◽  
Andrin Caviezel

&lt;p&gt;Forests with a high density and basal area of living trees are known for their function as natural and cost-efficient protection against rockfall. The role of deadwood, however, is less understood. We address this knowledge gap in this contribution as we present the results of repeated real-scale experiments in a) a montane beech-spruce forest with and without deadwood and b) in a subalpine scrub mountain pine-spruce forest with deadwood. We used artificial rocks with either an equant or platy shape, masses between 45 kg and 800 kg (&amp;#8776; 0.3 m3), and equipped with in-situ sensors to gain insights into rotational velocities and impact-accelerations. Clusters of deadwood and erected root plates reduced the mean runout distance at both study sites. For site a), we found that more rocks were stopped behind lying than living trees and that the stopping effect of deadwood was greater for equant compared to platy rock shapes. Site b) revealed a braking effect of scrub mountain pines for relatively small (45 kg), but also a visible reduction in rotational velocities for the 800 kg rocks sensor stream. We conclude that deadwood must be taken into account in rockfall modeling and the management of rockfall protection forests.&lt;/p&gt;


2004 ◽  
Vol 126 (1) ◽  
pp. 47-53 ◽  
Author(s):  
H. S. Tzou ◽  
J. H. Ding

Effective health monitoring and distributed control of advanced structures depends on accurate measurements of dynamic responses of elastic structures. Conventional sensors used for structural measurement are usually add-on “discrete” devices. Lightweight distributed thin-film piezoelectric neurons fully integrated (laminated or embedded) with structural components can serve as in-situ sensors monitoring structure’s dynamic state and health status. This study is to investigate modal voltages and detailed signal contributions of linear or nonlinear paraboloidal shells of revolution laminated with piezoelectric neurons. Signal generation of distributed neuron sensors laminated on paraboloidal shells is defined first, based on the open-voltage assumption and Maxwell’s principle. The neuron signal of a linear paraboloidal shell is composed of a linear membrane component and a linear bending component; the signal of a nonlinear paraboloidal shell is composed of nonlinear and linear membrane components and a linear bending component due to the von Karman geometric nonlinearity. Signal components and distributed modal voltages of linear and nonlinear paraboloidal shells with various curvatures and thickness are investigated.


Sign in / Sign up

Export Citation Format

Share Document