scholarly journals A Rapid Analytical Approach for Monitoring Pharmaceuticals in Hospital Wastewater—A DPX-Based Procedure with Environmentally-Friendly Extraction Phase Coupled to High Performance Liquid Chromatography–Diode Array/Fluorescence Detectors

Separations ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 109
Author(s):  
Vanessa Meneghini ◽  
Gabriela Corazza ◽  
Hérica A. Magosso ◽  
Josias Merib ◽  
Eduardo Carasek

In this study, a novel analytical methodology based on disposable pipette extraction (DPX) was developed using an alternative extraction phase for the extraction/determination of six pharmaceutical compounds, including carbamazepine, diclofenac, naproxen, fluoxetine, losartan and 17α-ethinylestradiol, in samples of hospital wastewater by high-performance liquid chromatography coupled to diode array and fluorescence detectors. The performance of three extraction phases was examined, including 3-n-propyl (3-methylpyridinium) silsesquioxane chloride (Si3Py+Cl−), the conductive polymer polypyrrole (PPy), and polypyrrole modified with cetyltrimethylammonium bromide (PPy.CTAB). The optimization of the experimental parameters was performed through univariate and multivariate approaches. The optimized condition was obtained with the use of 20 mg of Si3Py+Cl− as extraction phase; six extraction cycles with 700 μL of sample in each cycle and 15 s of extraction time; three desorption cycles with 100 μL of ACN (same aliquot) and 15 s of desorption time; and sample pH adjusted at 3.5 and addition of 15% (w/v) of NaCl in the sample. The methodology proposed exhibited environmentally-friendly aspects with a significantly reduced volume of organic solvent (only 100 µL) and a small amount of extraction phase (20 mg). In addition, the extraction phase employed exhibits a simple synthetic procedure, low cost, and high stability in organic solvent. Moreover, the method developed exhibits high throughput (extraction time of 6.5 min per sample), and robustness. The analytical figures of merit were obtained using hospital wastewater, and the values were very satisfactory. The correlation coefficients were higher than 0.9710. LODs and LOQs ranged from 0.030 µg L−1 to 1.510 µg L−1 and 0.10 µg L−1 to 5.00 µg L−1, respectively. Relative recoveries varied from 80 to 127%, and intra-day (n = 3) and inter-day (n = 9) precision was lower than 19%.

2020 ◽  
Vol 103 (3) ◽  
pp. 779-783
Author(s):  
Özlem Aksu Dönmez ◽  
Şule Dinç-Zor ◽  
Bürge Aşçı ◽  
Abdürrezzak E Bozdoğan

Abstract Background In many countries, the levels of synthetic food additives causing harm to humans have been determined and their use has been controlled by legal regulations. Sensitive, accurate and low-cost analysis methods are required for food additive determination. Objective In this study, a fast high performance liquid chromatography-diode array detection (HPLC-DAD) analytical methodology for quantification of sodium benzoate, potassium sorbate, ponceau 4R, and carmoisine in a beverage was proposed. Methods Partial least squares (PLS) and principal component regression (PCR) multivariate calibration methods applied to chromatograms with overlapped peaks were used to establish a green and smart method with short isocratic elution. A series of synthetic solutions including different concentrations of analytes were used to test the prediction ability of the developed methods. Conclusions The average recoveries for all target analytes were in the range of 98.27–101.37% with average relative prediction errors of less than 3%. The proposed chemometrics-assisted HPLC-DAD methods were implemented to a beverage successfully. Analysis results from sodium benzoate, potassium sorbate, ponceau 4R, and carmoisine in a beverage by PLS-2 and PCR were statistically compared with conventional HPLC. Highlights The HPLC methods coupled with the PLS-2 and PCR algorithm could provide a simple, quick and accurate strategy for simultaneous determination of sodium benzoate, potassium sorbate, ponceau 4R, and carmoisine in a beverage sample.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1371 ◽  
Author(s):  
Vanesa Nuñez-Gómez ◽  
Nieves Baenas ◽  
Inma Navarro-González ◽  
Javier García-Alonso ◽  
Diego A. Moreno ◽  
...  

Broccoli is a source of bioactive compounds that provide an important nutritional value. The content of these compounds can vary depending on agronomic and environmental conditions, as well as on elicitation. In this study, three crop trials were carried out to evaluate the effects of the cultivation season, the application of different dosages of methyl-jasmonate (MeJA) on the overall quality and on the total content of bioactive compounds of ‘Parthenon’ broccoli cultivated under the field conditions of southeastern Spain. Color parameters, chlorophyll content, total phenolic compounds, total flavonoids and antioxidant activity were measured to evaluate the overall quality. Moreover, individual carotenoids, phenolic compounds and glucosinolates were evaluated by high performance liquid chromatography with diode array detection (HPLC-DAD) and high performance liquid chromatography equipped with diode array detector coupled to mass spectrometer using electro spray ionization (HPLC-DAD-ESI/MSn). The content of total carotenoids, phenolic compounds and glucosinolates were higher in autumn compared with spring, showing increases of 2.8-fold, 2-fold and 1.2-fold, respectively. Moreover, a double application of MeJA increased the contents of total carotenoids, phenolic compounds and glucosinolates by 22%, 32% and 39%, respectively, relative to the untreated samples. Considering our results, the controlled and timely application of 250 µM MeJA to the aerial parts of the plants four days before harvest, on two consecutive days, seems to be a valid agronomic strategy to improve the health-promoting capacity of Parthenon broccoli, without compromising its overall quality.


Sign in / Sign up

Export Citation Format

Share Document