scholarly journals Rolling Circle and Loop Mediated Isothermal Amplification Strategy for Ultrasensitive miRNA Detection

Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 166
Author(s):  
Zheng Cao ◽  
Xianfeng Jiang ◽  
Guizhou Xiao ◽  
Mingcheng Xu ◽  
Hui Liu ◽  
...  

Rolling circle amplification (RCA) and loop mediated isothermal amplification (LAMP) were combined to establish the rolling circle and loop mediated isothermal amplification (RC-LAMP) method for miRNA detection. With the participation of Bst 2.0 DNA Polymerase, the method enabled RCA and LAMP amplification to occur simultaneously without thermal cycling. The limit of detection of RC-LAMP was 500 amol/L, which is comparable to previously reported amplification strategies. Moreover, its upper limit of quantitation was higher and showed a stronger resistance to matrix interference. Therefore, it is possible to detect low concentrations of miRNA in samples by increasing the total RNA added. Owing to its facile detection mode and simple operation, this method has great potential in clinical sample detection.

2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 222
Author(s):  
Chenxin Fang ◽  
Ping Ouyang ◽  
Yuxing Yang ◽  
Yang Qing ◽  
Jialun Han ◽  
...  

A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA–MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of nucleic acids.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11851
Author(s):  
Takema Hasegawa ◽  
Diana Hapsari ◽  
Hitoshi Iwahashi

The hybrid method upon combining rolling circle amplification and loop-mediated isothermal amplification (RCA-LAMP) was developed to quantify very small amount of different type of RNAs, such as miRNAs. RCA-LAMP can help detect short sequences through padlock probe (PLP) circularization and exhibit powerful DNA amplification. However, one of the factors that determines the detection limit of RCA-LAMP is non-specific amplification. In this study, we improved the accuracy of RCA-LAMP through applying RNase H-dependent PCR (rhPCR) technology. In this method, the non-specific amplification was suppressed by using the rh primer, which is designed through blocking the modification at the 3′end to stop DNA polymerase reaction and replacing the 6th DNA molecule from the end with RNA using RNase H2 enzyme. Traditional RCA-LAMP amplified the non-specific amplicons from linear PLP without a targeting reaction, while RCA-LAMP with rh primer and RNase H2 suppressed the non-specific amplification. Conversely, we identified the risk posed upon conducting PLP cyclization reaction using Splint R ligase in the RNA-targeting step that occurred even in the RNA-negative condition, which is another factor determining the detection limit of RCA-LAMP. Therefore, this study contributes in improving the accuracy of RNA quantification using RCA-LAMP.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246699
Author(s):  
Jiwon Lee ◽  
Youngbae Yoon ◽  
Eun Jin Kim ◽  
Donghyun Lee ◽  
Yeongjun Baek ◽  
...  

Reports of invasive disease due to Streptococcus pneumoniae have declined since the introduction of pneumococcal conjugate vaccines (PCV7 and PCV13). The incidence of invasive diseases due to S. pneumoniae that are not addressed by the vaccines, however, has increased in children and adults, creating a global public health problem. Previously, we established the loop-mediated isothermal amplification (LAMP) method for a PCV13 serotype-specific assay. In the current study, we developed a rapid, simple, and cost-effective assay to detect serotypes in the 23-valent pneumococcal polysaccharide vaccine (PPSV23) using the LAMP method. In this study, LAMP primer sets for serotypes 2, 8, 9N, 10A, 11A, 12F, 15B, 17F, 20, 22F, and 33F of S. pneumoniae were developed. The reactivity, specificity, and sensitivity of LAMP assays were determined and compared to those of conventional PCR. The feasibility of LAMP assays in clinical application in patients with invasive pneumococcal diseases was validated by defining the detection limit of the LAMP assay with bacterial genomic DNA-spiked blood specimens. The specificity of each LAMP assay was determined using 44 serotypes of pneumococcal strains. Their sensitivity was 100 copies per reaction versus 103 to 106 copies per reaction for PCR assays. Using DNA-spiked blood specimens, excluding the LAMP assay that targeted serotype 22F (103 copies per reaction), the limit of detection of the LAMP assay was similar to that with purified DNA as the template (102 copies per reaction), compared with 103 to >106 copies per reaction for PCR assays. In conclusion, a rapid and simple LAMP-based PPSV23-targeted serotype detection assay was developed for use in many countries. This study is the first report of a LAMP-based assay for identification of PPSV23 serotypes. Further evaluation of this assay is needed through surveillance and vaccine efficacy studies.


Author(s):  
DAILING CHEN ◽  
ZHILI LIANG ◽  
SHUNLIN REN ◽  
WALID ALALI ◽  
Lanming Chen

Vibrio cholerae  can cause pandemic cholera in humans. The bacterium resides in aquatic environments worldwide. Continuous testing of V. cholerae contamination in water and aquatic products is imperative for food safety control and human health. In this study, a rapid and visualized method was for the first time developed based on loop-mediated isothermal amplification (LAMP) for detection of very important virulence-related genes ace , zot , cri , and  nanH for toxins and infection process of V. cholerae . Three pairs of molecular probes targeting each of these genes were designed and synthesized. The one-step LAMP reaction was conducted at 65 o C for 40 min. Positive results were simply inspected by the production of light green color under visible light or green fluorescence under UV light (302 nm). Limit of detection (LOD) of the LAMP method ranged from 1.85-2.06 pg/reaction of genomic DNA or 2.50-4.00×10 2  CFU/reaction for target genes of cell culture of V. cholerae , which was more sensitive than standard polymerase chain reaction (PCR). Inclusivity and exclusivity of the LAMP method were 100% for all target genes. The method showed similar high efficiency to a certain extent in rapid testing of spiked or collected specimens of water and aquatic products. Target genes were detected by the absence from all water samples from various sources. However, high occurrences of nanH  gene were observed in intestine samples derived from four species of fish and one species of shellfish, indicating a risk of potentially toxic V. cholerae  in commonly consumed aquatic products. The results in this study provide a potential tool for rapid and visualized detection of V. cholerae in water and aquatic products.


RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 27091-27097 ◽  
Author(s):  
Qingwang Xue ◽  
Yanqin Lv ◽  
Yuanfu Zhang ◽  
Shuling Xu ◽  
Qiaoli Yue ◽  
...  

A novel label-free amplified fluorescent sensing scheme based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) has been developed for sensitive and selective detection of mercuric ions.


Sign in / Sign up

Export Citation Format

Share Document