scholarly journals Monitoring of Gold Biodistribution from Nanoparticles Using a HPLC-Visible Method

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 215
Author(s):  
Thomas Chaigneau ◽  
Arnaud Pallotta ◽  
Fatima Zahra Benaddi ◽  
Lucie Sancey ◽  
Said Chakir ◽  
...  

There is intensive research using gold nanoparticles for biomedical purposes, which have many advantages such as ease of synthesis and high reactivity. Their possible small size (<10 nm) can lead to the crossing of biological membranes and then to problematic dissemination and storage in organs that must be controlled and evaluated. In this work, a simple isocratic HPLC method was developed and validated to quantify the gold coming from nanoparticles in different biological samples. After a first carbonization step at 900 °C, the nanoparticles were oxidized by dibroma under acidic conditions, leading to tetrachloroaurate ions that could form ion pairs when adding rhodamine B. Finally, ion pairs were extracted and rhodamine B was evaluated to quantify the corresponding gold concentration by reversed-phase HPLC with visible detection. The method was validated for different organs (liver, spleen, lungs, kidneys, or brain) and fluids (plasma and urine) from rats and mice. Lastly, the developed method was used to evaluate the content of gold in organs and fluids after intravenous (IV) injection of nanoparticles.

1991 ◽  
Vol 37 (7) ◽  
pp. 1281-1283 ◽  
Author(s):  
T H Zytkovicz ◽  
J Salter ◽  
L Hennigan ◽  
R Timperi ◽  
J Maguire ◽  
...  

Abstract An isocratic HPLC method for measuring pyrimethamine extracted from infant plasma is reported. The method is an improvement over previously published methods by requiring lower volumes of plasma (100 microL) and having increased sensitivity to pyrimethamine at 210 nm. The procedure, which entails a basic organic extraction and subsequent HPLC chromatography of the reconstituted extract, can detect 1.4 ng and quantify 4.0 ng of pyrimethamine per 40-microL injection, with two analyses per 100-microL sample. Analytical recovery of pyrimethamine added to plasma at 10, 50, and 125 ng/100 microL averaged 80%, 92%, and 101%, respectively (n = 20). Within- and between-day CVs were less than 7%. Studies of various plasma samples from adults and infants (n = 15) revealed no interference from other plasma peaks with the analyte of interest.


1994 ◽  
Vol 40 (9) ◽  
pp. 1707-1712 ◽  
Author(s):  
R Abushufa ◽  
P Reed ◽  
C Weinkove

Abstract We developed an isocratic reversed-phase HPLC method to measure arachidonic, palmitoleic, linoleic, eicosatrienoic, oleic, palmitic, and stearic acids from hydrolyzed erythrocytes. Washed erythrocytes were heated in methanol:HCl and the fatty acids extracted into hexane:amyl alcohol. After derivatization with 4-bromomethyl-7-methoxycoumarin, samples diluted in mobile phase (acetonitrile:water, 85:15 by vol) were injected onto a 250 x 4.6 mm C18 column, and the eluted fatty acids were detected fluorometrically. For all analytes, the mean within-batch CV was 8.2% (5.5-10.8%), the mean limit of detection was 7.0 mumol/L, a linear response was maintained up to 400 mumol/L, and results agreed well with those by gas chromatography. The addition of antioxidant (butylated hydroxytoluene) was essential for sample stability. We discuss hydrolysis and extraction times, derivatization temperature, critical steps in chromatography, and concentration units.


1989 ◽  
Vol 35 (10) ◽  
pp. 2124-2126 ◽  
Author(s):  
W M Awni ◽  
L J Bakker

Abstract This HPLC method for measuring antipyrine, lorazepam, and indocyanine green in 0.5 mL of plasma can be used in studies of liver function in which these "model" compounds are used. After a fast, simple, one-step extraction procedure with acetonitrile, an isocratic HPLC system is used, with a single detection wavelength (214 nm) and a single internal standard (1-acetamidopyrene). The mobile phase is a 47/53 (by vol) mixture of acetonitrile and 50 mmol/L phosphate buffer, pH 6. The three compounds are separated on an LC-18 reversed-phase column. The low cost of the HPLC method makes feasible the routine clinical measurement of all three compounds.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


2020 ◽  
Vol 16 (7) ◽  
pp. 867-871
Author(s):  
Harun Ergen ◽  
Muge Guleli ◽  
Cigdem Sener ◽  
Cem Caliskan ◽  
Sercan Semiz ◽  
...  

Introduction: Polyvinyl alcohol (PVA), a polymer, is in demand due to its usage in different applications such as pharmaceutical, biomedical and textile, paper, food industries. Methods: A new sensitive reversed phased high-pressure liquid chromatography (RP-HPLC) method with refractive index detector (RID) was developed for determination of PVA in an ophthalmic solution containing dexpanthenol and PVA as active substances and it was validated according to The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline. Results: Chromatographic separation was achieved on a Chiral-AGP (150 mm × 4.0 mm, 5 μm) column kept at 30°C with an isocratic flow at a flow rate of 1.0 ml/min. The detector temperature was 30°C, the retention time of PVA was around 1.0 min and the total run time was 5 minutes. Conclusion: The proposed method showed linearity, accuracy, precision, specificity, robustness, solution stability, and system suitability results within the acceptance criteria.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amol S. Jagdale ◽  
Nilesh S. Pendbhaje ◽  
Rupali V. Nirmal ◽  
Poonam M. Bachhav ◽  
Dayandeo B. Sumbre

Abstract Background A new, sensitive, suitable, clear, accurate, and robust reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of brexpiprazole in bulk drug and tablet formulation was developed and validated in this research. Surface methodology was used to optimize the data, with a three-level Box-Behnken design. Methanol concentration in the mobile phase, flow rate, and pH were chosen as the three variables. The separation was performed using an HPLC method with a UV detector and Openlab EZchrom program, as well as a Water spherisorb C18 column (100 mm × 4.6; 5m). Acetonitrile was pumped at a flow rate of 1.0 mL/min with a 10 mM phosphate buffer balanced to a pH of 2.50.05 by diluted OPA (65:35% v/v) and detected at 216 nm. Result The developed RP-HPLC method yielded a suitable retention time for brexpiprazole of 4.22 min, which was optimized using the Design Expert-12 software. The linearity of the established method was verified with a correlation coefficient (r2) of 0.999 over the concentration range of 5.05–75.75 g/mL. For API and formulation, the percent assay was 99.46% and 100.91%, respectively. The percentage RSD for the method’s precision was found to be less than 2.0%. The percentage recoveries were discovered to be between 99.38 and 101.07%. 0.64 μg/mL and 1.95 μg/mL were found to be the LOD and LOQ, respectively. Conclusion The developed and validated RP-HPLC system takes less time and can be used in the industry for routine quality control/analysis of bulk drug and marketed brexpiprazole products. Graphical abstract


1990 ◽  
Vol 36 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J G Goddard ◽  
G J Kontoghiorghes

Abstract "High-performance" liquid-chromatographic (HPLC) methods have been developed for identifying 1-substituted 2-alkyl-3-hydroxypyrid-4-one iron chelators in serum and urine. Ion pairing with heptane- or octanesulfonic acid in pH 2.0-2.2 phosphate buffer and reversed-phase chromatography were required to separate these compounds from endogenous compounds in both biological fluids. In both the 2-methyl and 2-ethyl series of 1-substituted compounds (H, methyl, ethyl, or propyl) the elution times increased in accordance with the n-octanol/water partition coefficients (propyl greater than ethyl greater than H greater than methyl). Urine samples were filtered (0.4 microns pore size) and injected either undiluted or after dilution with elution buffer. After the addition of internal standard, the plasma or serum samples were deproteinized by treatment with HCIO4, 0.5 mol/L, centrifuged, and the supernates were injected directly onto the HPLC. Using these procedures, we could identify 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in the serum and urine of a thalassemic patient who had received a 3-g dose of the drug and in the urine of other patients who had received the same dose. One or more possible metabolites were also observed in the chromatograms of both urine and serum. The 24-h urinary output of L1 (0.22-2.37 g) and iron (10.6-71.5 mg) varied but there was no correlation between the two with respect to quantity or concentration. Instead, urinary iron output was higher in patients with a greater number of transfused units of erythrocytes. This is the first study in humans to show that L1 is absorbed from the gut, enters the circulation, and is excreted in the urine.


2013 ◽  
Vol 5 (19) ◽  
pp. 5010 ◽  
Author(s):  
Marco Ciulu ◽  
Roberta Farre ◽  
Ignazio Floris ◽  
Valeria M. Nurchi ◽  
Angelo Panzanelli ◽  
...  

2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


Sign in / Sign up

Export Citation Format

Share Document