scholarly journals Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition

Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
Scott W. Bailey ◽  
Robert P. Long ◽  
Stephen B. Horsley

Reductions in exchangeable calcium and magnesium and increase in exchangeable aluminum concentrations have been shown in soils impacted by acid deposition, including at four sites on the Allegheny Plateau, PA, USA, sampled in 1967 and 1997 during a period of peak deposition. We repeated sampling at these sites in 2017 to evaluate changes in soils during the more recent period when there has been a strong decline in acid deposition. The uppermost horizons, including the Oa and A horizons where humified organic matter transitions to mineral soil, were thicker, had higher concentrations of organic carbon and exchangeable calcium and magnesium, and lower concentrations of exchangeable aluminum in 2017 compared to 1997, approximating values measured in 1967. Below the Oa/A horizons, 2017 soil chemistry was more similar to the 1997 results, with some reduction of Ca in the recent measurements. These results suggest recovery of base cation–aluminum balance in surface horizons and may indicate a reduction of aluminum mobilization and increased efficiency of vegetation recycling of nutrients with decreased acid anion concentrations. These changes are consistent with a partial recovery from acid deposition. However, the increase in humified soil organic matter may also be affected by coincident increases in temperature and soil moisture.

2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


1998 ◽  
Vol 78 (3) ◽  
pp. 477-479 ◽  
Author(s):  
C. J. Westman ◽  
S. Jauhiainen

Forest soil pH in southwest Finland was measured with identical sampling and analysing methods in 1970 and 1989. The acidity of the organic humus layer increased significantly as pH values measured on water and on salt suspensions decreased between the two sampling dates. For the mineral soil layers, no unambiguous trend was found. pH values measured on salt suspension tended to be unchanged or lower, while pH on water suspension in some soil layers were even higher in 1989 than in 1970. Key words: pH, repeated sampling


2012 ◽  
Vol 518-523 ◽  
pp. 3150-3154
Author(s):  
Jian She Yang ◽  
Ying Ding

Abstract: Calcium and magnesium contents of sludge composting are measured by using the method of ammonium acetate-EDTA complex metric titration here, through Fermentation accelerant and increased nutrient agent treatments. The results showed as following: 1, exchangeable Ca and Mg contents of sludge single treatment increased more 6.83% and5.12% at the end of composting, than at the beginning of composting. 2, Fermentation accelerant added in sludge from 8% to 40%,,the exchangeable calcium and magnesium are more 4.38% ~ 10.58% and 6.77% ~ 13.78% at the end of composting than at the beginning of composting. The exchangeable Ca increased 19.51% ~ 104.83%, but 6.05% of a decreased trend for exchangeable magnesium, Compared with the sludge single compost. 3, as increasing the amount of nutrient agent from 30% to 50%, the exchangeable calcium and magnesium are more 3.88%~7.75%and 5.24%~9.18% at the end of composting than at the beginning of composting. The exchangeable Ca increased in 11.35%~41.13%,but 49%~-3.96% of a decreased trend for exchangeable magnesium, Compared with the sludge single compost. 4, under the condition added 24% of the Fermentation accelerant agent to the sludge, as the Increased nutrient agents from 8% to 32%, the exchangeable calcium and magnesium measured are increased 2.63%~5.54%and3.6%~4.19% at the end of composting , compared with The beginning of composting. The exchangeable Ca increased in 52.34%~112.04%,but -10.15%~-15.59% for exchangeable magnesium, Compared with the sludge single compost.


2012 ◽  
Vol 9 (12) ◽  
pp. 5181-5197 ◽  
Author(s):  
C. Moni ◽  
D. Derrien ◽  
P.-J. Hatton ◽  
B. Zeller ◽  
M. Kleber

Abstract. Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of 15N labelled litter. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.


2009 ◽  
Vol 44 (8) ◽  
pp. 996-1001 ◽  
Author(s):  
Pedro Rodolfo Siqueira Vendrame ◽  
Robélio Leandro Marchão ◽  
Osmar Rodrigues Brito ◽  
Maria de Fátima Guimarães ◽  
Thierry Becquer

The objective of this work was to assess the relationship between macrofauna, mineralogy and exchangeable calcium and magnesium in Cerrado Oxisols under pasture. Twelve collection points were chosen in the Distrito Federal and in Formosa municipality, Goiás state, Brazil, representing four soil groups with varied levels of calcium + magnesium and kaolinite/(kaolinite + gibbsite) ratios. Soil macrofauna was collected in triplicate at each collection point, and identified at the level of taxonomic groups. Macrofauna density showed correlation with contents of kaolinite, gibbsite and exchangeable Ca + Mg in the soils. Mineralogy and exchangeable Ca + Mg had significant effects on taxonomic groups and relative density of soil macrofauna. The termites (Isoptera) were more abundant in soils with low exchangeable Ca + Mg; earthworms (Oligochaeta), in soils with high levels of kaolinite; and Hemiptera and Coleoptera larvae were more abundant in gibbsitic soils with higher contents of total carbon.


2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


Author(s):  
Dennis Knight ◽  
Daniel Tinker

In forest ecosystems, the decomposition of coarse woody debris, woody roots, twigs, leaves and micro-organisms is a primary source of mineral soil organic matter. Primary productivity, the accumulation of nutrients, and other important ecosystem processes are largely dependent on the mineral soil organic matter that has developed during hundreds or thousands of years. Large quantities of coarse woody debris are typically produced following natural disturbances such as fires, pest/pathogen outbreaks, and windstorms, and make a significant contribution to the formation of soil organic matter (SOM). In contrast, timber harvesting often removes much of the coarse woody debris (CWD), which could result in a decrease in the quantity and a change in the quality of mineral soil organic matter.


1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


1992 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
N.W. Foster ◽  
M.J. Mitchell ◽  
I.K. Morrison ◽  
J.P. Shepard

Annual nutrient fluxes within two forests exposed to acidic deposition were compared for a 1-year period. Calcium (Ca2+) was the dominant cation in throughfall and soil solutions from tolerant hardwood dominated Spodosols (Podzols) at both Huntington Forest (HF), New York, and the Turkey Lakes watershed (TLW), Ontario. There was a net annual export of Ca2+ and Mg2+ from the TLW soil, whereas base cation inputs in precipitation equaled outputs at HF. In 1986, leaching losses of base cations were five times greater at TLW than at HF. A higher percentage of the base cation reserves was leached from the soil at TLW (5%) than at HF (1%). Relative to throughfall, aluminum concentrations increased in forest-floor and mineral-soil solutions, especially at HF. The TLW soil appears more sensitive to soil acidification. Deposited atmospheric acidity, however, was small in comparison with native soil acidity (total and exchangeable) and the reserves of base cations in each soil. Soil acidity and base saturation, therefore, are likely only to change slowly.


2013 ◽  
Vol 116 (1-3) ◽  
pp. 119-130 ◽  
Author(s):  
Andrew L. Robison ◽  
Todd M. Scanlon ◽  
Bernard J. Cosby ◽  
James R. Webb ◽  
James N. Galloway

Sign in / Sign up

Export Citation Format

Share Document