scholarly journals Decomposition Analysis of Carbon Emissions from Energy Consumption in Beijing-Tianjin-Hebei, China: A Weighted-Combination Model Based on Logarithmic Mean Divisia Index and Shapley Value

2018 ◽  
Vol 10 (7) ◽  
pp. 2535 ◽  
Author(s):  
Yi Liang ◽  
Dongxiao Niu ◽  
Weiwei Zhou ◽  
Yingying Fan

The Beijing-Tianjin-Hebei (B-T-H) region, who captures the national strategic highland in China, has drawn a great deal of attention due to the fog and haze condition and other environmental problems. Further, the high carbon emissions generated by energy consumption has restricted its further coordinated development seriously. In order to accurately analyze the potential influencing factors that contribute to the growth of energy consumption carbon emissions in the B-T-H region, this paper uses the carbon emission coefficient method to measure the carbon emissions of energy consumption in the B-T-H region, using a weighted combination based on Logarithmic Mean Divisia Index (LMDI) and Shapley Value (SV). The effects affecting carbon emissions during 2001–2013 caused from five aspects, including energy consumption structure, energy consumption intensity, industrial structure, economic development and population size, are quantitatively analyzed. The results indicated that: (1) The carbon emissions had shown a sustained growth trend in the B-T-H region on the whole, while the growth rates varied in the three areas. In detail, Hebei Province got the first place in carbon emissions growth, followed by Tianjin and Beijing; (2) economic development was the main driving force for the carbon emissions growth of energy consumption in B-T-H region. Energy consumption structure, population size and industrial structure promoted carbon emissions growth as well, but their effects weakened in turn and were less obvious than that of economic development; (3) energy consumption intensity had played a significant inhibitory role on the carbon emissions growth; (4) it was of great significance to ease the carbon emission-reduction pressure of the B-T-H region from the four aspects of upgrading industrial structure adjustment, making technological progress, optimizing the energy structure and building long-term carbon-emission-reduction mechanisms, so as to promote the coordinated low-carbon development.

Author(s):  
Zhenqiang Li ◽  
Qiuyang Zhou

Abstract Based on panel data from 2000 to 2017 in 29 Chinese provinces, this paper analyzes the impact of industrial structure upgrading on carbon emissions by constructing a spatial panel model and a panel threshold model. The results show that (1) there is a significant spatial correlation between carbon emissions in Chinese provinces, and the carbon emissions of a province are affected by the carbon emissions of surrounding provinces; (2) in China, carbon emissions have a significant time lag feature, and current carbon emissions are largely affected by previous carbon emissions; (3) industrial structure upgrading can effectively promote carbon emission reductions in local areas, and the impact of industrial structure upgrading on carbon emissions has a significant threshold effect. With continued economic development, the promotion effect of industrial structure upgrading on carbon emission reductions will decrease slightly, but this carbon emission reduction effect is still significant. (4) In addition, there is a clear difference between the impact of energy consumption intensity and population size on carbon emissions in short and long terms. In the short term, the increase in energy consumption intensity and the expansion of population size not only increase the carbon emissions of a local area but also increase the carbon emissions of neighboring areas. In the long term, the impact of energy consumption intensity and population size on carbon emissions of neighboring areas will be weakened, but the promotion impact on carbon emissions in local areas will be strengthened.


2014 ◽  
Vol 955-959 ◽  
pp. 2607-2612
Author(s):  
Chun Hua Zhao ◽  
Yu E Wang ◽  
Dong Sheng He

Based on the results of SSM, regional natural endowment conditions, the stage of economic development and the industrial structure evolution determine the energy consumption structure, while the changes in total energy consumption determine the changes in amount of carbon emissions. Under the premise of the total energy consumption is determined, the optimization of energy consumption structure will reduce the carbon intensity (emissions per unit of GDP), that is to achieve low-input, low-emission energy, high output, which is the essence of the low carbon economic development model. Hebei Energy consumption is heavily dependent on coal; however, coal utilization efficiency is low and unit energy carbon emissions are huge, therefore, energy structure dominated by carbon-based energy is a long-term constraint of the development of low carbon economy. Energy consumption structure is composed of regional natural endowments, the stage of economic development and industrial structure, and it is difficult to change in the short term.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jiekun Song ◽  
Qing Song ◽  
Dong Zhang ◽  
Youyou Lu ◽  
Long Luan

Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models) are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great.


Author(s):  
Wang Lijuan

Carbon emission is further intensified as urbanization and industrialization continue to accelerate. China has maintained its rapid economic development and urbanization in the last 2 decades. The development of the construction industry has not only consumed a large number of energy sources but also resulted in significant carbon emissions, causing some environmental damage. Recognizing the major influencing factors of carbon emissions in the construction industry has become a research hotspot to alleviate environmental pollution caused by the construction industry and meet industrial demands for energy saving and emission reduction. In this study, the factors that influence annual carbon emissions of different building types in China from 2011 to 2018 were decomposed by Logarithmic Mean Divisia Index (LMDI) through a case study in Henan Province. The major influencing factors of carbon emissions have been identified. Results demonstrate that the per capita carbon emission in the construction industry in Henan Province remains high from 2011 to 2018, but it decreases year by year. Carbon emissions from the construction industry in Henan Province increase due to economic development and energy structure. Energy efficiency can inhibit carbon emissions from the construction industry in Henan Province. The obtained conclusions have a positive effect on analyzing annual variations in carbon emissions from the construction industry in a region, identifying influencing factors, and proposing specific countermeasures of energy saving and emission reduction.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xin Tong

As economic development rapidly progresses in China, a method of carbon emission control that provides reasonable solutions is needed. This paper analyzes the convergence of carbon emission evolutionary characteristics in different regions of China and studies the dynamics of carbon emissions in China based on a convergence model. It was found that the carbon emission levels of each region are prominent in terms of time, and the regional carbon emission level has absolute β characteristics. The regional carbon emission condition β convergences have different convergence paths. Therefore, it is necessary to justify carbon emission reduction in China and put forward an emission reduction strategy.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Li ◽  
Qing-Xiang Ou

This paper employs an extended Kaya identity as the scheme and utilizes the Logarithmic Mean Divisia Index (LMDI II) as the decomposition technique based on analyzing CO2emissions trends in China. Change in CO2emissions intensity is decomposed from 1995 to 2010 and includes measures of the effect of Industrial structure, energy intensity, energy structure, and carbon emission factors. Results illustrate that changes in energy intensity act to decrease carbon emissions intensity significantly and changes in industrial structure and energy structure do not act to reduce carbon emissions intensity effectively. Policy will need to significantly optimize energy structure and adjust industrial structure if China’s emission reduction targets in 2020 are to be reached. This requires a change in China’s economic development path and energy consumption path for optimal outcomes.


2011 ◽  
Vol 71-78 ◽  
pp. 2416-2419
Author(s):  
Hong Qin Liu ◽  
Xu Yan ◽  
Hai Yan Duan ◽  
Xian En Wang

After World War Ⅱ Japanese economy has undergone three periods: the rapid industrialization period, the industrial structure adjustment period and the economy depression period. Affected by the speed of economic development, industrial structure and other factors, Japanese energy consumption has shown different features during specific period of time. This article use the LMDI model, analyze the effect of different factors on Japanese energy consumption which include economic development, energy intensity, energy consumption structure and population size, research on the weight of specific factors during each developing period. The results show that all the factors show positive effect in the rapid industrialization period; in the industrial structure adjustment period, economic development factor shows positive effect while energy consumed factor shows negative; and in the depression period, the trend of all the factors contribution rate are slowly, economic development and energy consumption structure also show negative effect besides the energy intensity factor.


2013 ◽  
Vol 448-453 ◽  
pp. 4281-4284 ◽  
Author(s):  
Shao Bo Liu

Using IPCC methodology, the carbon emissions of Chinese Northeast Old Industrial Base is calculated, and the energy's synthesized impact on carbon emissions intensity is presented. The resulting shows that the carbon emissions in the three northeast provinces decreased 52.87% from 2000 to 2010, of which, Liaoning, Jilin and Heilongjiang are individually 60.09%, 45.47% and 54.14% lower. The implications are that the energy structure is one of the main factors in carbon emission in the Old Industrial Base of Northeast China, and its industrial structure is changing greatly due to energy consumption carbon emission. To adjust optimally the energy and industrial structure, and to develop the energy technology to promote energy utilization are recommended.


Sign in / Sign up

Export Citation Format

Share Document