scholarly journals Characteristics of the Soil and Vegetation along the Yulin–Jingbian Desert Expressway in China

2019 ◽  
Vol 11 (3) ◽  
pp. 606
Author(s):  
Hao Chen ◽  
Zhibao Dong ◽  
Shaopeng Song ◽  
Chao Li ◽  
Xujia Cui

Transportation infrastructure dramatically affects ecological processes. However, the environmental assessment process does not often consider how transportation impacts biodiversity, especially in ecologically fragile areas. The aim of this study was to assess the impacts of the Yulin–Jingbian expressway on vegetative diversity and to discuss the reason for the differences in soil-moisture distribution and vegetation diversity along the expressway. Samples were collected from 60 quadrats, along 6 transects. The α diversity indices and soil-moisture content calculated for each layer were used to represent habitat heterogeneity within a quadrat. A total of 49 species representing 39 genera and 16 families were recorded. Perennial herbs (42.9%) and annual herbs (36.7%) were the dominant life form. Species richness, diversity, and evenness indices of the vegetation varied with the distance between sampling points along the expressway. The vegetation with high diversity and evenness were near the expressway and areas with low diversity were farther from the expressway. The soil-moisture content in the 0–20 cm soil layer was a driving factor for the α diversity indices, and soil-moisture content below 20 cm played an inhibitory role on the α diversity indices. The greatest impact of the expressway on vegetation diversity was its effect on surface runoff and the distribution of plant root systems in the top layer of soil.

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


Biologia ◽  
2017 ◽  
Vol 72 (8) ◽  
Author(s):  
Gábor Milics ◽  
Attila J. Kovács ◽  
Attila Pörneczi ◽  
Anikó Nyéki ◽  
Zoltán Varga ◽  
...  

AbstractSoil moisture content directly influences yield. Mapping within field soil moisture content differences provides information for agricultural management practices.In this study we aimed to find a cost-effective method for mapping within field soil moisture content differences. Spatial coverage of the field sampling or TDR method is still not dense enough for site-specific soil management. Soil moisture content can be calculated by measuring the apparent soil electrical conductivity (Soil moisture map was also compared to yield map showing correlation (


2005 ◽  
Vol 53 (1) ◽  
pp. 31-39 ◽  
Author(s):  
L. Huzsvay ◽  
J. Nagy

The yield of maize is primarily influenced by sunlight, temperature, available plant nutrients and water supply. Since plants take up water through their roots, the most decisive factor is not precipitation but the quantity of water available in the soil. In this study, a simple, easy-to-reproduce, capacitive model was elaborated to determine the available moisture content for maize. During the calculations, based on the balance method, the available moisture content in the top 110 cm soil layer was determined, taking daily weather data into account. The examinations were carried out on a medium heavy chernozem soil with lime deposits, in a multifactorial experiment at the Látókép Experimental Station of the Center of Agricultural Sciences, Debrecen University, between 1990 and 2004. Annual yield fluctuation is primarily determined by the soil moisture content in the month of July and the water supplies in May, according to regression analysis. The maize yields in the past 15 years could be calculated with an accuracy of 570 kg/ha, an error limit of below 10% and an r value of 0.805, using a regression line and the data of monthly moisture supplies. However, the yields of fertilized plots can only be estimated with an accuracy of 1 t/ha on average. Fertilizer utilization is influenced by the moisture content of the soil, so it makes sense to include this in the analysis instead of the other environmental factors. Water is required for nutrient utilization. In years with poor or medium water supplies, moderate fertilizer rates are more effective, compared to higher rates in years with better water supplies. Efficient fertilization in maize production can only be achieved by harmonizing soil moisture content and the applied fertilizer rate.


2013 ◽  
Vol 61 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Viliam Nagy ◽  
Gábor Milics ◽  
Norbert Smuk ◽  
Attila József Kovács ◽  
István Balla ◽  
...  

Abstract A soil moisture content map is important for providing information about the distribution of moisture in a given area. Moisture content directly influences agricultural yield thus it is crucial to have accurate and reliable information about moisture distribution and content in the field. Since soil is a porous medium modified generalized Archie’s equation provides the basic formula to calculate moisture content data based on measured ECa. In this study we aimed to find a more accurate and cost effective method for measuring moisture content than manual field sampling. Locations of 25 sampling points were chosen from our research field as a reference. We assumed that soil moisture content could be calculated by measuring apparent electrical conductivity (ECa) using the Veris-3100 on-the-go soil mapping tool. Statistical analysis was carried out on the 10.791 ECa raw data in order to filter the outliers. The applied statistical method was ±1.5 interquartile (IRQ) distance approach. The visualization of soil moisture distribution within the experimental field was carried out by means of ArcGIS/ArcMAP using the inverse distance weighting interpolation method. In the investigated 25 sampling points, coefficient of determination between calculated volumetric moisture content data and measured ECa was R2 = 0.87. According to our results, volumetric moisture content can be mapped by applying ECa measurements in these particular soil types.


2021 ◽  
pp. 199-206
Author(s):  
Arzu Rivera Garcia ◽  
Géza Tuba ◽  
Györgyi Kovács ◽  
Lúcia Sinka ◽  
József Zsembeli

The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple drainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.  


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Quanen Guo ◽  
Tianwen Guo ◽  
Zhongming Ma ◽  
Zongxian Che ◽  
Lili Nan ◽  
...  

The relationship between spatial and temporal dynamics of major salt ions and their toxicology is still unclear, particularly in perennial orchard fields. A seasonal soil sampling was conducted from Apr. to Oct. 2011 in a salinized orchard soil in semiarid northwest China. Soil moisture content and concentrations of total soluble salt and eight salt ions were measured every 2 weeks in the soil at 0 to 2, 2 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 40, 40 to 60, 60 to 80, and 80 to 120 cm during the growing period of apple trees. Soil moisture content decreased early in the growth season (Period 1) but with increasing rainfall in the middle of growing season (Period 2 and Period 3) and reached a maximum at late season (Period 4) at all depths. Soil salt concentration increased along with soil profile, particularly in the 60- to 120-cm soil layer at all periods. The highest soil salt level was observed in Period 4. The contents of HCO3–, Ca2+, and Mg2+ were almost uniform in all soil layers, but the contents of Cl–, SO42–, and Na+ increased with soil layer. The content of K+ decreased from the upper to the deeper layers of soil profile. The distribution of CO32– had a high temporal and spatial heterogeneity with soil depths and season. Analysis of the charge balance on positive and negative salt ions indicated that the horizontal movement of ions and the transfer of soil water were likely the driving factors affecting soil salinization. The movement of Na+ and Mg2+ ions in the top soil may be responsible for rhizospheric ions composition and toxin effect to restrain apple tree growth in the early growth period.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1076
Author(s):  
Xianbing Wu ◽  
Meijian Bai ◽  
Yinong Li ◽  
Taisheng Du ◽  
Shaohui Zhang ◽  
...  

Understanding the response of crop growth to water and fertilizer is helpful to improve their management and use efficiency. Three water and fertilizer coupling treatments were designed to carry out a two-season trial on two cabbage (Brassica oleracea L. var. capitata) cultivars in spring and autumn in the Beijing–Tianjin–Hebei region. The irrigation timings of the three treatments were controlled by the soil moisture content of 0–20 cm soil layer. Treatment 1 (LWHF): when the soil moisture content was decreased to 75% of the field capacity (θf), irrigation was carried out (i.e., the lower limit of irrigation was 75%θf), the critical soil moisture content for stopping irrigation was 90%θf (upper limit of irrigation), and the nitrogen (N) application amount was 400 kg/ha; treatment 2 (HWLF): the lower and upper limits of irrigation were 85%θf and 100%θf, respectively, and the N application amount was 200 kg/ha; and treatment 3 (MWMF): the lower and upper limits of irrigation were 75%θf and 100%θf, respectively, and the N application amount was 300 kg/ha. The results showed that the yield and its related parameters of cabbage in spring were higher than those in autumn because of the use of different cultivars and seasons. The growth indices of HWLF and MWMF in the two seasons were larger than that of LWHF, and the yields of HWLF were the highest, 78.37 t/ha (spring) and 64.42 t/ha (autumn), respectively. The nitrogen use efficiencies (NUEs) of LWHF in spring and HWLF in autumn were the highest, 213.29 kg/kg and 391.83 kg/kg, respectively. In general, there were statistically significant differences in the cumulative increment in plant height, stem diameter and leaf area in the two-season trial, yield in autumn and NUE in spring among the three treatments. In addition, there was a significant positive linear correlation between almost all indices in different growth stages and the corresponding evapotranspiration (ETi). It is suggested that the application of drip irrigation under mulch should be approximately 114.7–125.0 mm, and the N fertilization should be about 200 kg/ha.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 536 ◽  
Author(s):  
Xianbo Zhao ◽  
Shiguo Xu ◽  
Tiejun Liu ◽  
Pengpeng Qiu ◽  
Guoshuai Qin

This paper outlines dynamics of near-surface hydrothermal processes and analyzes the characteristics of moisture distribution during the freeze–thaw period in a typical black soil zone around Harbin, Northeastern China, a region with a moderate depth of seasonally frozen ground and one of the most important granaries in China. At Field Site 1, we analyzed the soil temperature and soil moisture content data from November 2011 to April 2012 from soil depths of 1, 5, 10, and 15 cm in sunny slope, and from depths of 1, 5, and 10 cm in shady slope black soil farmland. At Field Site 2, soil samples were collected from a168mlong sloping black soil field at locations 10, 50, 100, and 150 m from the bottom of the slope at different depths of 0–1 cm, 1–5 cm, and 5–10 cm at the same location. Analysis of the monitored Site 1 soil temperature and soil moisture content data showed that the soil moisture content and soil temperature fit line is consistent with a Gaussian distribution rather than a linear distribution during the freeze–thaw period. The soil moisture content and time with temperature fit line is in accordance with a Gaussian distribution during the freeze–thaw period. Site 2 soil samples were analyzed, and the soil moisture contents of the sloping black soil farmland were obtained during six different freeze–thaw periods. It was verified that the soil moisture content and time with temperature fit line is in accordance with a Gaussian distribution during the six different freeze–thaw periods. The maximum surface soil moisture content was reached during the early freeze–thaw period, which is consistent with the natural phenomenon of early spring peak soil moisture content under temperature rise and snow melt. The soil moisture contents gradually increased from the top to the bottom in sloping black soil farmland during the freeze–thaw period. Since the soil moisture content is related to soil temperature during the freeze–thaw cycle, we validated the correlation between soil temperature spatiotemporal China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model–Soil Temperature (CMADS-ST) data and monitored data. The practicality of CMADS-ST in black soil slope farmland in the seasonal frozen ground zone of the study area is very good. This research has important significance for decision-making for protecting water and soil environments in black soil slope farmland.


2011 ◽  
Vol 90-93 ◽  
pp. 3245-3249
Author(s):  
Chun Ying Long ◽  
Hui Zhang

With interchanging vegetational reconstruction of Ying Rui highway as the research object, using Drying method as principal combining with TDR method,carry out communication areas of different vegetation types and different matrix types of slope area of dynamic monitoring soil moisture in the spring, the results show:Soil moisture content in spring declined as time goes on from March 8, to April 7 day. Dynamic general trend of soil moisture declined from 6:00 am to 6 :00pm,the soil moisture content overall drop which slightly fluctuates after afternoon, but has no obvious peak, and increases again after evening .The soil moisture content of two kinds of reconstruction models varies with different soil layer thickness:0-20 cm soil shows trees reconstructing model >shrubs reconstruction model ;20 to 40 cm soil shows bush rebuild model> trees reconstruction model.


Sign in / Sign up

Export Citation Format

Share Document