Soil Moisture Dynamic Discussed of the Exchanging Vegetation Reconstruction of Ying Rui Highway in the Spring

2011 ◽  
Vol 90-93 ◽  
pp. 3245-3249
Author(s):  
Chun Ying Long ◽  
Hui Zhang

With interchanging vegetational reconstruction of Ying Rui highway as the research object, using Drying method as principal combining with TDR method,carry out communication areas of different vegetation types and different matrix types of slope area of dynamic monitoring soil moisture in the spring, the results show:Soil moisture content in spring declined as time goes on from March 8, to April 7 day. Dynamic general trend of soil moisture declined from 6:00 am to 6 :00pm,the soil moisture content overall drop which slightly fluctuates after afternoon, but has no obvious peak, and increases again after evening .The soil moisture content of two kinds of reconstruction models varies with different soil layer thickness:0-20 cm soil shows trees reconstructing model >shrubs reconstruction model ;20 to 40 cm soil shows bush rebuild model> trees reconstruction model.

2011 ◽  
Vol 356-360 ◽  
pp. 2440-2444
Author(s):  
Chun Ying Long

The research object is slop near Yingrui highway, we mainly used oven drying method, combined with TDR, carrying out different vegetation types in interchange area and different substrates types in slope area about dynamic monitoring soil moisture in the spring. According to the result, The daily dynamic of the 2 types of slop soil moisture content has no obvious regular pattern, but each time the moisture content in soil slope are higher than rocky slope. We can get the conclusion after variance analysis, the main factors which influencing the discretion of the soil moisture content in slope and interchange area are the slope matrix type and the different vegetation reconstruction mode in interchange area. Meanwhile, according to the data, which we applied to the same experiment with both TDR and oven drying method, and after comparative analysis, we think, it’s completely effective to make TDR applied in deep soil moisture determination in some places such as interchange area, but the data about shallow soil moisture determination which got from the places such as in side slope is inaccurate. We should be more cautious when using it.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rehman S. Eon ◽  
Charles M. Bachmann

AbstractThe advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.


2013 ◽  
Vol 726-731 ◽  
pp. 3803-3806
Author(s):  
Bing Ru Liu ◽  
Jun Long Yang

In order to revel aboveground biomass of R. soongorica shrub effect on soil moisture and nutrients spatial distribution, and explore mechanism of the changes of soil moisture and nutrients, soil moisture content, pH, soil organic carbon (SOC) and total nitrogen (TN) at three soil layers (0-10cm,10-20cm, and 20-40cm) along five plant biomass gradients of R. soongorica were investigated. The results showed that soil moisture content increased with depth under the same plant biomass, and increased with plant biomass. Soil nutrient properties were evidently influenced with plant biomass, while decreased with depth. SOC and TN were highest in the top soil layer (0-10 cm), but TN of 10-20cm layer has no significant differences (P < 0.05). Moreover, soil nutrient contents were accumulated very slowly. These suggests that the requirement to soil organic matter is not so high and could be adapted well to the desert and barren soil, and the desert plant R. soongorica could be acted as an important species to restore vegetation and ameliorate the eco-environment.


2018 ◽  
Vol 34 (6) ◽  
pp. 963-971 ◽  
Author(s):  
Tonny José Araújo da Silva ◽  
Edna Maria Bonfim-Silva ◽  
Adriano Bicioni Pacheco ◽  
Thiago Franco Duarte ◽  
Helon Hébano de Freitas Sousa ◽  
...  

Abstract.Accurate measurements of soil moisture content can contribute to resource conservation in irrigated systems. The objective of this study was to evaluate various soil moisture sensors (a porous cup tensiometer, Diviner 2000, PR2, XH300, PM100, and ML3; the mention of model names does not constitute an implied endorsement) used in four different soil types. The experiment was conducted inside a greenhouse using a specially constructed box that contained the soil samples. The soil samples were first saturated and subsequently drained before starting the measurements. The soil moisture content was determined by the oven-drying method. Using the standard deviation of the sensor readings, regression analyses were performed, resulting in calibration equations and coefficient of determination (R2) values for each sensor and soil type combination. The porous cup tensiometer, Diviner 2000, PR2, and ML3 measurements resulted in excellent R2 values that exceeded 0.95 for the four soils. However, measurements with the XH300 and PM100 sensors resulted in R2 values of 0.37 to 0.86 and 0.61 to 0.94, respectively, limiting their scientific applicability for the studied soils. Therefore, the porous cup tensiometer, Diviner 2000, PR2, and ML3 estimated the soil moisture content with greater confidence than did the other sensors and with an error of less than 5%. Keywords: Calibration, Tensiometer, Volumetric water content.


2005 ◽  
Vol 53 (1) ◽  
pp. 31-39 ◽  
Author(s):  
L. Huzsvay ◽  
J. Nagy

The yield of maize is primarily influenced by sunlight, temperature, available plant nutrients and water supply. Since plants take up water through their roots, the most decisive factor is not precipitation but the quantity of water available in the soil. In this study, a simple, easy-to-reproduce, capacitive model was elaborated to determine the available moisture content for maize. During the calculations, based on the balance method, the available moisture content in the top 110 cm soil layer was determined, taking daily weather data into account. The examinations were carried out on a medium heavy chernozem soil with lime deposits, in a multifactorial experiment at the Látókép Experimental Station of the Center of Agricultural Sciences, Debrecen University, between 1990 and 2004. Annual yield fluctuation is primarily determined by the soil moisture content in the month of July and the water supplies in May, according to regression analysis. The maize yields in the past 15 years could be calculated with an accuracy of 570 kg/ha, an error limit of below 10% and an r value of 0.805, using a regression line and the data of monthly moisture supplies. However, the yields of fertilized plots can only be estimated with an accuracy of 1 t/ha on average. Fertilizer utilization is influenced by the moisture content of the soil, so it makes sense to include this in the analysis instead of the other environmental factors. Water is required for nutrient utilization. In years with poor or medium water supplies, moderate fertilizer rates are more effective, compared to higher rates in years with better water supplies. Efficient fertilization in maize production can only be achieved by harmonizing soil moisture content and the applied fertilizer rate.


2021 ◽  
pp. 199-206
Author(s):  
Arzu Rivera Garcia ◽  
Géza Tuba ◽  
Györgyi Kovács ◽  
Lúcia Sinka ◽  
József Zsembeli

The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple drainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.  


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 653-661 ◽  
Author(s):  
Quanen Guo ◽  
Tianwen Guo ◽  
Zhongming Ma ◽  
Zongxian Che ◽  
Lili Nan ◽  
...  

The relationship between spatial and temporal dynamics of major salt ions and their toxicology is still unclear, particularly in perennial orchard fields. A seasonal soil sampling was conducted from Apr. to Oct. 2011 in a salinized orchard soil in semiarid northwest China. Soil moisture content and concentrations of total soluble salt and eight salt ions were measured every 2 weeks in the soil at 0 to 2, 2 to 5, 5 to 10, 10 to 15, 15 to 20, 20 to 25, 25 to 40, 40 to 60, 60 to 80, and 80 to 120 cm during the growing period of apple trees. Soil moisture content decreased early in the growth season (Period 1) but with increasing rainfall in the middle of growing season (Period 2 and Period 3) and reached a maximum at late season (Period 4) at all depths. Soil salt concentration increased along with soil profile, particularly in the 60- to 120-cm soil layer at all periods. The highest soil salt level was observed in Period 4. The contents of HCO3–, Ca2+, and Mg2+ were almost uniform in all soil layers, but the contents of Cl–, SO42–, and Na+ increased with soil layer. The content of K+ decreased from the upper to the deeper layers of soil profile. The distribution of CO32– had a high temporal and spatial heterogeneity with soil depths and season. Analysis of the charge balance on positive and negative salt ions indicated that the horizontal movement of ions and the transfer of soil water were likely the driving factors affecting soil salinization. The movement of Na+ and Mg2+ ions in the top soil may be responsible for rhizospheric ions composition and toxin effect to restrain apple tree growth in the early growth period.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1076
Author(s):  
Xianbing Wu ◽  
Meijian Bai ◽  
Yinong Li ◽  
Taisheng Du ◽  
Shaohui Zhang ◽  
...  

Understanding the response of crop growth to water and fertilizer is helpful to improve their management and use efficiency. Three water and fertilizer coupling treatments were designed to carry out a two-season trial on two cabbage (Brassica oleracea L. var. capitata) cultivars in spring and autumn in the Beijing–Tianjin–Hebei region. The irrigation timings of the three treatments were controlled by the soil moisture content of 0–20 cm soil layer. Treatment 1 (LWHF): when the soil moisture content was decreased to 75% of the field capacity (θf), irrigation was carried out (i.e., the lower limit of irrigation was 75%θf), the critical soil moisture content for stopping irrigation was 90%θf (upper limit of irrigation), and the nitrogen (N) application amount was 400 kg/ha; treatment 2 (HWLF): the lower and upper limits of irrigation were 85%θf and 100%θf, respectively, and the N application amount was 200 kg/ha; and treatment 3 (MWMF): the lower and upper limits of irrigation were 75%θf and 100%θf, respectively, and the N application amount was 300 kg/ha. The results showed that the yield and its related parameters of cabbage in spring were higher than those in autumn because of the use of different cultivars and seasons. The growth indices of HWLF and MWMF in the two seasons were larger than that of LWHF, and the yields of HWLF were the highest, 78.37 t/ha (spring) and 64.42 t/ha (autumn), respectively. The nitrogen use efficiencies (NUEs) of LWHF in spring and HWLF in autumn were the highest, 213.29 kg/kg and 391.83 kg/kg, respectively. In general, there were statistically significant differences in the cumulative increment in plant height, stem diameter and leaf area in the two-season trial, yield in autumn and NUE in spring among the three treatments. In addition, there was a significant positive linear correlation between almost all indices in different growth stages and the corresponding evapotranspiration (ETi). It is suggested that the application of drip irrigation under mulch should be approximately 114.7–125.0 mm, and the N fertilization should be about 200 kg/ha.


2019 ◽  
Vol 11 (3) ◽  
pp. 606
Author(s):  
Hao Chen ◽  
Zhibao Dong ◽  
Shaopeng Song ◽  
Chao Li ◽  
Xujia Cui

Transportation infrastructure dramatically affects ecological processes. However, the environmental assessment process does not often consider how transportation impacts biodiversity, especially in ecologically fragile areas. The aim of this study was to assess the impacts of the Yulin–Jingbian expressway on vegetative diversity and to discuss the reason for the differences in soil-moisture distribution and vegetation diversity along the expressway. Samples were collected from 60 quadrats, along 6 transects. The α diversity indices and soil-moisture content calculated for each layer were used to represent habitat heterogeneity within a quadrat. A total of 49 species representing 39 genera and 16 families were recorded. Perennial herbs (42.9%) and annual herbs (36.7%) were the dominant life form. Species richness, diversity, and evenness indices of the vegetation varied with the distance between sampling points along the expressway. The vegetation with high diversity and evenness were near the expressway and areas with low diversity were farther from the expressway. The soil-moisture content in the 0–20 cm soil layer was a driving factor for the α diversity indices, and soil-moisture content below 20 cm played an inhibitory role on the α diversity indices. The greatest impact of the expressway on vegetation diversity was its effect on surface runoff and the distribution of plant root systems in the top layer of soil.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1423 ◽  
Author(s):  
Qiuwen Zhou ◽  
Zhiyan Sun ◽  
Xiaolin Liu ◽  
Xiaocha Wei ◽  
Zheng Peng ◽  
...  

For different vegetation types, soil moisture content shows varying characteristics in different seasons and under different precipitation conditions. However, these characteristics have not been extensively analyzed in karst regions of southwest China. In this study, the soil moisture content of four plots of bare land, grassland, shrubland, and forestland was monitored, and the soil moisture content and corresponding meteorological data for each plot were analyzed. The results indicate that the average soil moisture content in grassland was the highest with weak temporal variation and that in bare, shrub, and forest lands soil moisture content was low with moderate temporal variation. The average soil moisture content in bare, grass, and forest lands was higher in the rainy season than in the dry season, whereas in shrubland, the soil moisture content was higher in the dry season than in the rainy season. Increase in soil moisture content during each precipitation event correlated with the rainfall amount. With increasing rainfall amount, soil moisture content in forest and shrub lands increased more than in bare and grass lands. The peak soil moisture time in each vegetation type plot varied and the peak soil moisture time was related to soil moisture content before a rainfall event. Temperature showed a strong negative correlation with soil moisture content for all vegetation cover types in both the dry and rainy season. Wind speed also showed a strong negative correlation with soil moisture content for all vegetation types during the dry season. Relative humidity had a strong positive correlation with soil moisture content in bare, shrub, and forest lands during the dry season as well as in the four vegetation types during the rainy season. These results demonstrate the variations in soil water characteristics across different vegetation types in karst regions of southwest China.


Sign in / Sign up

Export Citation Format

Share Document