scholarly journals The Influence of Slope Positions on the Recovery Response of Compacted Soil Properties and Enzyme Activity in an Oriental Beech Stand in the Hyrcanian Forests, Iran

2019 ◽  
Vol 11 (7) ◽  
pp. 1940 ◽  
Author(s):  
Meghdad Jourgholami ◽  
Alireza Ramineh ◽  
Ghavamodin Zahedi Amiri ◽  
Eric Labelle

Several studies emphasize the effects of slope position on divergences of soil properties in forest ecosystems, but limited data is available on the impact of slope position on recovery levels of soil, which were exposed to compaction due to machine traffic. This study examined the effects of slope position (i.e., S; summit, BS; backslope, and TS; toeslope) on recovery rate of soil properties and enzyme activity four years after ground-based harvesting operations were performed on machine operating trails, compared to the undisturbed areas (UND) in the Hyrcanian forests (north of Iran). Soil properties and enzyme activity of compacted soil in machine operating trails showed significant trend differences among the slope positions. A significantly lower soil bulk density, penetration resistance, soil moisture, aggregate stability, pH, sand, and C/N ratio were found in TS compared to the values recorded in the BS and S treatments. Conversely, total porosity, macroporosity, silt, clay, organic C, total N, available nutrients (i.e., P, K+, Ca2+, and Mg2+), fulvic and humic acid, earthworm density and dry mass as well as fine root biomass were higher in TS than in the BS and S treatments. Soil microbial respiration, MBC, NH4+, NO3−, N mineralization, and MBN were significantly higher in the UND areas followed by TS > BS > S treatment. The highest activity levels of enzymes (i.e., urease, acid phosphatase, arylsulfatase, invertase, and ß-N-acetylglucosaminidase) were detected in the UND areas, followed by TS > BS > S treatment. The highest recovery levels of all soil properties and enzyme activity were found in TS, followed by BS > S treatment. However, the full recovery of soil properties did not occur even after a 4-year period, compared to the UND areas. Our study results highlight the significance of the slope position in augmenting divergence in soil properties and enzyme activity after ground-based machine traffic.

2019 ◽  
Vol 28 (5) ◽  
pp. 354 ◽  
Author(s):  
Víctor Fernández-García ◽  
Elena Marcos ◽  
José Manuel Fernández-Guisuraga ◽  
Angela Taboada ◽  
Susana Suárez-Seoane ◽  
...  

We analyse the effects of burn severity on individual soil properties and soil quotients in Mediterranean fire-prone pine forests immediately after a wildfire. Burn severity was measured in the field through the substrate stratum of the Composite Burn Index and soil samples were taken 7–9 days after a wildfire occurred in a Pinus pinaster Ait. ecosystem. In each soil sample, we analysed physical (size of soil aggregates), chemical (pH, organic C, total N and available P) and biological (microbial biomass C, β-glucosidase, urease and acid phosphatase activities) properties. Size of aggregates decreased in the areas affected by high burn severity. Additionally, moderate and high severities were associated with increases in pH and available P concentration and with decreases in organic C concentration. Microbial biomass C showed similar patterns to organic C along the burn severity gradient. The enzymatic activities of phosphatase and β-glucosidase showed the highest sensitivity to burn severity, as they strongly decreased from the low-severity scenarios. Among the studied soil quotients, the C:N ratio, microbial quotient and β-glucosidase:microbial biomass C quotient decreased with burn severity. This work provides valuable information on the impact of burn severity on the functioning of sandy siliceous soils in fire-prone pine ecosystems.


2000 ◽  
Vol 80 (4) ◽  
pp. 567-575 ◽  
Author(s):  
K. T. Webb ◽  
C. Wang ◽  
T. Astatkie ◽  
D. R. Langille

In response to concerns over the widespread soil degradation occurring on Canada's agricultural lands, Agriculture and Agri-Food Canada established a network of benchmark sites to assess soil quality change by monitoring agronomically important soil properties. The Nova Scotia site was established in 1989 on Queens (Gleyed Brunisolic Gray Luvisols) and Debert (Gleyed Dystric Brunisols) soil series under a corn–forage rotation within the Annapolis–Minas Lowlands ecoregion. The objectives of the project were to quantify temporal changes in agronomically important soil properties and determine how the property values vary with the landscape and components of the soil map unit. A 20 × 25 m grid was used in 1990 and again in 1995 to sample soil from the Ap horizon and to locate saturated hydraulic conductivity and penetration resistance measurements. The samples were analyzed for pH, organic C, total N, and available P and K. The results indicate that over 5 yr, organic C, C:N ratio, available P, and saturated hydraulic conductivity declined by 7.9, 4.7, 12.5, and 53%, respectively. Significant differences in pH, organic C, total N, available K, penetration resistance and saturated hydraulic conductivity were associated with selected components of the soil map unit. Slope position had a minimal effect on soil properties except for available K where the highest levels were located on middle slope positions. Interactions between particle size and slope position were found, with soils with coarse-loamy sola on upper slope positions having the lowest pH. The results of this study also demonstrated the utility of the method for monitoring soil quality change and the importance of the soil map unit in interpreting the spatial and temporal differences in soil properties. Key words: Soil variability, soil monitoring, soil properties, soil map unit, spatial correlation


2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


1995 ◽  
Vol 75 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Christian Godbout ◽  
Jean-Louis Brown

A Podzolic soil from an old-growth maple hardwood forest in eastern Canada was systematically sampled from a 16.5-m-long trench in 1975. In 1986, the upper 10 cm of the B horizon was resampled from two sampling lines located on each side and parallel to the 1975 trench, one at a distance of 1 m downhill and the other at a distance of 4 m uphill. Total N, organic C, pH, and exchangeable Ca, Mg and K were measured. The objectives were to evaluate the change in the chemical status of the B horizon from 1975 to 1986 and to characterize the spatial variability of the horizon. No significant change was found in the soil chemical properties tested during this 11-yr period. No significant autocorrelation was observed between soil samples 60 cm apart, except for the downhill sampling line, which was located 1 m from the trench. For most properties, the magnitude of the difference between two soil sampling units was not proportional to the distance separating them over the range of 0.6–4.2 m. Except for pH, a difference in soil properties of more than 30% was observed in 37–56% of sample pairs 60 cm apart. Resampling near (1 m) an old soil pit may not be valid because of possible local modifications of soil properties created by the pit, even when it is filled in. Key words: Podzol, soil variability, acidic deposition, soil changes


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Soo Ying Ho ◽  
Mohd Effendi Bin Wasli ◽  
Mugunthan Perumal

A study was conducted in the Sabal area, Sarawak, to evaluate the physicochemical properties of sandy-textured soils under smallholder agricultural land uses. Study sites were established under rubber, oil palm, and pepper land uses, in comparison to the adjacent secondary forests. The sandy-textured soils underlain in all agricultural land uses are of Spodosols, based on USDA Soil Taxonomy. The soil properties under secondary forests were strongly acidic with poor nutrient contents. Despite higher bulk density in oil palm farmlands, soil properties in rubber and oil palm land uses showed little variation to those in secondary forests. Conversely, soils under pepper land uses were less acidic with higher nutrient contents at the surface layer, especially P. In addition, soils in the pepper land uses were more compact due to human trampling effects from regular farm works at a localized area. Positive correlations were observed between soil total C and soil total N, soil exchangeable K, soil sum of bases, and soil effective CEC, suggesting that soil total C is the determinant of soil fertility under the agricultural land uses. Meanwhile, insufficient K input in oil palm land uses was observed from the partial nutrient balances estimation. In contrast, P and K did not remain in the soils under pepper land use, although the fertilizers application by the farmers was beyond the crop uptake and removal (harvesting). Because of the siliceous sandy nature (low clay contents) of Spodosols, they are poor in nutrient retention capacity. Hence, maintaining ample supply of organic C is crucial to sustain the productivity and fertility of sandy-textured soils, especially when the litterfall layers covering the E horizon were removed for oil palm and pepper cultivation.


2014 ◽  
Vol 94 (3) ◽  
pp. 389-402 ◽  
Author(s):  
J. J. Miller ◽  
B. W. Beasley ◽  
C. F. Drury ◽  
X. Hao ◽  
F. J. Larney

Miller, J. J., Beasley, B. W., Drury, C. F., Hao, X. and Larney, F. J. 2014. Soil properties following long-term application of stockpiled feedlot manure containing straw or wood-chip bedding under barley silage production. Can. J. Soil Sci. 94: 389–402. The influence of long-term land application of stockpiled feedlot manure (SM) containing either wood-chip (SM-WD) or straw (SM-ST) bedding on soil properties during the barley (Hordeum vulgare L.) silage growing season is unknown. The main objective of our study was determine the effect of bedding material in stockpiled manure (i.e., SM-WD vs. SM-ST) on certain soil properties. A secondary objective was to determine if organic amendments affected certain soil properties compared with unamended soil. Stockpiled feedlot manure with SM-WD or SM-ST bedding at 77 Mg (dry wt) ha−1 yr−1 was annually applied for 13 to 14 yr to a clay loam soil in a replicated field experiment in southern Alberta. There was also an unamended control. Soil properties were measured every 2 wk during the 2011 and 2012 growing season. Properties included water-filled pore space (WFPS), total organic C and total N, NH4-N and NO3-N, water-soluble non-purgeable organic C (NPOC), water-soluble total N (WSTN), denitrification (acetylene inhibition method), and CO2 flux. The most consistent and significant (P≤0.05) bedding effects on soil properties in both years occurred for total organic C, C:N ratio, and WSTN. Total organic C and C:N ratio were generally greater for SM-WD than SM-ST, and the reverse trend occurred for WSTN. Bedding effects on other soil properties (WFPS, NH4-N, NO3-N, NPOC) occurred in 2012, but not in 2011. Total N, daily denitrification, and daily CO2 flux were generally unaffected by bedding material. Mean daily denitrification fluxes ranged from 0.9 to 1078 g N2O-N ha−1 d−1 for SM-ST, 0.8 to 326 g N2O-N ha−1 d−1 for SM-WD, and 0.6 to 250 g N2O-N ha−1 d−1 for the CON. Mean daily CO2 fluxes ranged from 5.3 to 43.4 kg CO2-C ha−1 d−1 for SM-WD, 5.5 to 26.0 kg CO2-C ha−1 d−1 for SM-ST, and from 0.5 to 6.8 kg CO2-C ha−1 d−1 for the CON. The findings from our study suggest that bedding material in feedlot manure may be a possible method to manage certain soil properties.


2013 ◽  
Vol 93 (3) ◽  
pp. 319-328 ◽  
Author(s):  
Noura Ziadi ◽  
Bernard Gagnon ◽  
Judith Nyiraneza

Ziadi, N., Gagnon, B. and Nyiraneza, J. 2013. Crop yield and soil fertility as affected by papermill biosolids and liming by-products. Can. J. Soil Sci. 93: 319–328. Papermill biosolids (PB) in combination with alkaline industrial residuals could benefit agricultural soils while diverting these biosolids from landfill. A greenhouse study was conducted to evaluate the effect of three types of PB at rates of 0, 30, and 60 wet Mg ha−1, as well as five liming by-products at 3 wet Mg ha−1 along with 30 Mg PB ha−1 on crop yield, nutrient accumulation, and soil properties. De-inking paper biosolids (DB, C/N of 65) were applied to soybean [Glycine max (L.) Merr.], and two combined PB (PB1, C/N of 31; and PB2, C/N of 14) were applied to dry bean (Phaseolus vulgaris L.) and barley (Hordeum vulgare L.), respectively. The liming by-products included lime mud (LM), wood ash (WA) from paper mills, commercial calcitic lime (CL), Mg dissolution by-product (MgD), and Mg smelting and electrolysis work (MgSE). Compared with the control, PB2 increased barley yield and total Mg and Na accumulation, and both PB increased plant N, P, and Ca accumulation in barley and dry bean. The impact of DB on soybean was limited. The addition of liming by-products to PB or DB did not affect crop attributes except the combination with MgSE, which severely reduced the growth of dry bean and, to a lesser extent, soybean. Soil NO3-N was immobilized following DB application, whereas there was a net release with both PB. Combining PB and liming by-products produced the greatest changes in soil properties at harvest. Generally, LM and CL raised pH and Mehlich-3 Ca, and MgSE caused a strong increase in Mehlich-3 Mg and Na and water-soluble Cl. When used with appropriate crops, biosolids from paper mills and alkaline residuals other than MgSE can efficiently enhance soil fertility by providing organic C and macronutrients for balanced crop fertilization.


2002 ◽  
Vol 32 (5) ◽  
pp. 892-902 ◽  
Author(s):  
T I Little ◽  
D J Pluth ◽  
I G.W Corns ◽  
D W Gilmore

After wildfire in the boreal forest, storage of organic carbon (C) begins with the accumulation of forest floor material. Soil properties of Gray Luvisols were studied to determine the differences in development along three toposequences. Our central hypothesis is that slope position does not influence the amount of accumulated organic C and total nitrogen (N) in the forest floor. Organic C and the C/N ratio in the forest floor and in A and B horizons increased from the crest to the toe of the slope. The forest floor contributed 2.0 ± 0.4 kg C·m–2 (mean ± SE) at the crest to 3.5 ± 0.5 kg C·m–2 at the toe. Throughout the solum, the C/N ratio was lower at the top of the slope compared with the toe (p < 0.05), and there were no differences among slope positions for in situ net N mineralization rates. Leaf area index, used as a proxy for net primary productivity, was greater (p < 0.05) at the toe compared with the crest position, and it was negatively correlated with forest floor total N concentration (r = –0.35, p = 0.027). These results, from mixedwood stands approximately 90 years after the last major fire disturbance, indicate that slope position does influence forest floor organic C by horizon volume (p = 0.02), but not total N concentration (p = 0.07). Despite the apparently lower N availability at the toe position, it exhibited the greatest potential productivity.


2018 ◽  
Vol 137 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Azade Deljouei ◽  
Seyed Mohammad Moein Sadeghi ◽  
Ehsan Abdi ◽  
Markus Bernhardt-Römermann ◽  
Emily Louise Pascoe ◽  
...  

2012 ◽  
Vol 92 (4) ◽  
pp. 589-598 ◽  
Author(s):  
Mônica B. Benke ◽  
Tee Boon Goh ◽  
Rigas Karamanos ◽  
Newton Z. Lupwayi ◽  
Xiying Hao

Benke, M. B., Goh, T. B., Karamanos, R., Lupwayi, N. Z. and Hao, X. 2012. Retention and nitrification of injected anhydrous NH3as affected by soil pH. Can. J. Soil Sci. 92: 589–598. Anhydrous ammonia is an economical and extensively used fertilizer, yet loss after injection can reduce its agronomic efficiency. A laboratory experiment was conducted to examine how soil properties affect ammonia retention and nitrification following anhydrous NH3injection using 10 different Canadian prairie soils. Soils were also injected with atmospheric air for comparison. Following injection, soils were incubated for up to 216 h at field capacity. Among the soil properties studied [pH (1:2 water), clay, total N, and organic C contents], only pH was negatively related (R2=0.55, n=10, 24 h incubation) to percentage injected N retained by soil. The amount of N retained by soil 24 h following injection was 92±2% (mean±SEM) when pH <6, compared with 64±2% when pH>7.5. Rate of nitrification increased (P<0.001) about 48–96 h following injection and was greater in pH>7.5 than pH<6 soils. There was no difference (P>0.05) in bacterial diversity between ammonia- and air-injected soils. The slower nitrification rates suggest that potential leaching and denitrification losses in acid soils could be smaller than in alkaline soils.


Sign in / Sign up

Export Citation Format

Share Document