The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest

2018 ◽  
Vol 137 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Azade Deljouei ◽  
Seyed Mohammad Moein Sadeghi ◽  
Ehsan Abdi ◽  
Markus Bernhardt-Römermann ◽  
Emily Louise Pascoe ◽  
...  
2011 ◽  
Vol 22 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Kambiz Abrari Vajari ◽  
Hamid Jalilvand ◽  
Mohammad Reza Pourmajidian ◽  
Kambiz Espahbodi ◽  
Alireza Moshki

2019 ◽  
Vol 11 (7) ◽  
pp. 1940 ◽  
Author(s):  
Meghdad Jourgholami ◽  
Alireza Ramineh ◽  
Ghavamodin Zahedi Amiri ◽  
Eric Labelle

Several studies emphasize the effects of slope position on divergences of soil properties in forest ecosystems, but limited data is available on the impact of slope position on recovery levels of soil, which were exposed to compaction due to machine traffic. This study examined the effects of slope position (i.e., S; summit, BS; backslope, and TS; toeslope) on recovery rate of soil properties and enzyme activity four years after ground-based harvesting operations were performed on machine operating trails, compared to the undisturbed areas (UND) in the Hyrcanian forests (north of Iran). Soil properties and enzyme activity of compacted soil in machine operating trails showed significant trend differences among the slope positions. A significantly lower soil bulk density, penetration resistance, soil moisture, aggregate stability, pH, sand, and C/N ratio were found in TS compared to the values recorded in the BS and S treatments. Conversely, total porosity, macroporosity, silt, clay, organic C, total N, available nutrients (i.e., P, K+, Ca2+, and Mg2+), fulvic and humic acid, earthworm density and dry mass as well as fine root biomass were higher in TS than in the BS and S treatments. Soil microbial respiration, MBC, NH4+, NO3−, N mineralization, and MBN were significantly higher in the UND areas followed by TS > BS > S treatment. The highest activity levels of enzymes (i.e., urease, acid phosphatase, arylsulfatase, invertase, and ß-N-acetylglucosaminidase) were detected in the UND areas, followed by TS > BS > S treatment. The highest recovery levels of all soil properties and enzyme activity were found in TS, followed by BS > S treatment. However, the full recovery of soil properties did not occur even after a 4-year period, compared to the UND areas. Our study results highlight the significance of the slope position in augmenting divergence in soil properties and enzyme activity after ground-based machine traffic.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


2020 ◽  
Vol 3 (1) ◽  
pp. 49
Author(s):  
Edgaras Linkevičius ◽  
Gerda Junevičiūtė

Climate change and warming will potentially have profound effects on forest growth and yield, especially for pure stands in the near future. Thus, increased attention has been paid to mixed stands, e.g., pine and beech mixtures. However, the interaction of tree species growing in mixtures still remains unknown. Thus, the aim of this study was to investigate the impact of the interspecific and intraspecific competition to diameter, height, and crown width of pine and beech trees growing in mixtures, as well as to evaluate the impact of climatic indicators to the beech radial diameter increment. The data was collected in 2017 at the mixed mature pine beech double layer stand, located in the western part of Lithuania. The sample plot of 1.2 hectare was established and tree species, diameter at the breast height, tree height, height-to-crown base, height-to-crown width, and position were measured for all 836 trees. Additionally, a representative sample of radial diameter increments were estimated only for the beech trees by taking out core discs at the height of 1 m when the stand was partially cut. Competition analysis was based on the distance-dependent competition index, which was further based on crown parameters. Climatic effect was evaluated using classification and regression tree (CART) analysis. We found almost no interspecific competition effect to diameter, height, or crown width for both tree species growing in the first layer. However, it had an effect on beeches growing in the second layer. The intraspecific competition effect was important for pine and beech trees, showing a negative effect for both of them. Our results show the possible coexistence of these tree species due to niche differentiation. An analysis of climatic indicators from 1991–2005 revealed that precipitation from February–May of the current vegetation year and mean temperatures from July to September expressed radial diameter increment effects for beech trees. Low temperatures during March and April, as well as high precipitation during January, had a negative effect on beech radial increments. From 2006–2016, the highest effect on radial diameter increments was the mean temperatures from July to September, as well as the precipitation in January of the current year. From 1991–2016, the highest effect on radial diameter increments was the temperature from July to September 1991–2016 and the precipitation in June 1991–2016. Generally, cool temperatures and higher precipitation in June had a positive effect on beech radial increments. Therefore, our results show a sensitivity to high temperatures and droughts during summer amid Lithuanian’s growth conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Hadi Sohrabi ◽  
Meghdad Jourgholami ◽  
Mohammad Jafari ◽  
Farzam Tavankar ◽  
Rachele Venanzi ◽  
...  

Soil damage caused by logging operations conducted to obtain and maximize economic benefits has been established as having long-term effects on forest soil quality and productivity. However, a comprehensive study of the impact of logging operations on earthworms as a criterion for soil recovery has never been conducted in the Hyrcanian forests of Iran. The aim of this study was to determine the changes in soil biological properties (earthworm density and biomass) and its recovery process under the influence of traffic intensity, slope and soil depth in various intervals according to age after logging operations. Soil properties were compared among abandoned skid trails with different ages (i.e., 3, 10, 20, and 25 years) and an undisturbed area. The results showed that earthworm density and biomass in the high traffic intensity and slope class of 20–30% at the 10–20 cm depth of the soil had the lowest value compared to the other treatments. Twenty-five years after the logging operations, the earthworm density at soil depth of 0–10 and 10–20 cm was 28.4% (0.48 ind. m−2) and 38.6% (0.35 ind. m−2), which were less than those of the undisturbed area, respectively. Meanwhile, the earthworm biomass at a soil depth of 0–10 and 10–20 cm was 30.5% (2.05 mg m−2) and 40.5% (1.54 mg m−2) less than the values of the undisturbed area, respectively. The earthworm density and biomass were positively correlated with total porosity, organic carbon and nitrogen content, while negatively correlated with soil bulk density and C/N ratio. According to the results, 25 years after logging operations, the earthworm density and biomass on the skid trails were recovered, but they were significantly different with the undisturbed area. Therefore, full recovery of soil biological properties (i.e., earthworm density and biomass) takes more than 25 years. The conclusions of our study reveal that the effects of logging operations on soil properties are of great significance, and our understanding of the mechanism of soil change and recovery demand that harvesting operations be extensively and properly implemented.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


Sign in / Sign up

Export Citation Format

Share Document