scholarly journals Future Regional Contributions for Climate Change Mitigation: Insights from Energy Investment Gap and Policy Cost

2019 ◽  
Vol 11 (12) ◽  
pp. 3341
Author(s):  
Hongjie Sun ◽  
Shuwen Niu ◽  
Xiqiang Wang

Mitigating climate change and ensuring regional equity development is equitable are matters of global concern. Systematic and in-depth research into theseissues is seldom conducted. In this research we combine qualitative and quantitative studies and use six state-of-the-art energy-economy analysis models and four long term scenarios to explore the distribution of regional contributions for climate change mitigation in the future. We focus on the energy investment gap and policy cost. The study’s conclusion is that, under the assumption of carbon tax as a source of energy investment from 2025, the global positive energy investment gap in the climate change mitigation scenario will not appear until around 2035–2040. Asia and OECD90+EU (Countries from the OECD 1990, EU and its candidates) are the regions that will have a significant direct impact on the global energy investment gap under climate policies in the future. However, from the perspective of the relative value (the percentage of the energy investment gap relative to the energy investment in the Current Policies (CPol) scenario), Asia will contribute the most to the global energy investment gap under the climate stability policies. Under the Nationally Determined Contributions (NDC) scenario, Asia will contribute the most in the near term and REF will contribute the most in the medium term.The findings show that OECD90+EUwill bear more cost in the pledges scenario, and Asia will bear more cost in the climate stability scenarios in the medium term. Contrary to the common sense expectation, the developed regions will contribute the least in terms of the proportion of the policy cost to the respective economic aggregates under the climate stability scenarios in the medium and long term, but the opposite is true in the developing regions. By and large, from the perspective of the current climate change mitigation policies, the developed regions and developing regions will achieve a win-win situation in the long run, but the relative contribution of the developed regions is not as great as was previously expected. These novel findings should prove to be useful to policy makers when developing transition strategies for climate change mitigation.

2018 ◽  
Vol 25 (1) ◽  
pp. 120 ◽  
Author(s):  
Alexander Dunlap

Providing a glimpse into the reality of wind energy development, the story of Álvaro Obregón is one of resistance. Álvaro Obregón is a primarily Zapotec semi-subsistence community located near the entrance of the Santa Teresa sand bar (Barra), where in 2011 Mareña Renovables initiated the process of building 102 wind turbines. Demonstrating the complicated micro-politics of land acquisition, conflict and unrest, this article argues that climate change mitigation initiatives are sparking land grabs and conflict with the renewed valuation of wind resources. Insurrection against the Mareña Renovables wind project has spawned a long-term conflict, which has created social divisions and a type of low-intensity civil war within the town. This article will chronicle the uprising against the wind company, battles with police, and the town hall takeover, which includes analyzing the conflict taking place between the cabildo comunitario and the constitucionalistas. Subsequent sections examine the different perspectives within the village and how this battle between the Communitarians and the wind company continues today. The article reveals the complications associated with land deals, the conflict generating potential of climate change mitigation practices and, finally, concludes by reflecting on the difficulties of formulating alternatives to development within a conflict situation.


2020 ◽  
Author(s):  
Nektarios Chrysoulakis ◽  
Zina Mitraka ◽  
Mattia Marconcini ◽  
David Ludlow ◽  
Zaheer Khan ◽  
...  

<p>Resilience has become an important necessity for cities, particularly in the face of climate change. Mitigation and adaptation actions that enhance the resilience of cities need to be based on a sound understanding and quantification of the drivers of urban transformation and settlement structures, human and urban vulnerability, and of local and global climate change. Copernicus, as the means for the establishment of a European capacity for Earth Observation (EO), is based on continuously evolving Core Services. A major challenge for the EO community is the innovative exploitation of the Copernicus products in dealing with urban sustainability towards increasing urban resilience. Due to the multidimensional nature of urban resilience, to meet this challenge, information from more than one Copernicus Core Services, namely the Land Monitoring Service (CLMS), the Atmosphere Monitoring Service (CAMS), the Climate Change Service (C3S) and the Emergency Management Service (EMS), is needed. Furthermore, to address urban resilience, the urban planning community needs spatially disaggregated environmental information at local (neighbourhood) scale. Such information, for all parameters needed, is not yet directly available from the Copernicus Core Services mentioned above, while several elements - data and products - from contemporary satellite missions consist valuable tools for retrieving urban environmental parameters at local scale. The H2020-Space project CURE (Copernicus for Urban Resilience in Europe) is a joint effort of 10 partners from 9 countries that synergistically exploits the above Copernicus Core Services to develop an umbrella cross-cutting application for urban resilience, consisting of individual cross-cutting applications for climate change adaptation/mitigation, energy and economy, as well as healthy cities and social environments, at several European cities. These cross-cutting applications cope with the required scale and granularity by also integrating or exploiting third-party data, in-situ observations and modelling. CURE uses DIAS (Data and Information Access Services) to develop a system capable of supporting operational applications and downstream services across Europe. The CURE system hosts the developed cross-cutting applications, enabling its incorporation into operational services in the future. CURE is expected to increase the value of Copernicus Core Services for future emerging applications in the domain of urban resilience, exploiting also the improved data quality, coverage and revisit times of the future satellite missions. Thus, CURE will lead to more efficient routine urban planning activities with obvious socioeconomic impact, as well as to more efficient resilience planning activities related to climate change mitigation and adaptation, resulting in improved thermal comfort and air quality, as well as in enhanced energy efficiency. Specific CURE outcomes could be integrated into the operational Copernicus service portfolio. The added value and benefit expected to emerge from CURE is related to transformed urban governance and quality of life, because it is expected to provide improved and integrated information to city administrators, hence effectively supporting strategies for resilience planning at local and city scales, towards the implementation of the Sustainable Development Goals and the New Urban Agenda for Europe.</p>


2020 ◽  
Vol 6 (4) ◽  
pp. 437-462
Author(s):  
Leonid M. Grigoryev ◽  
Dzhanneta D. Medzhidova

The international community has become increasingly concerned with sustainable development and particularly with preventing climate change. The COVID-19 pandemic and global recession of 2020 will exacerbate the situation not just for 2020–2021, but for many years to come. Sadly, it is a game-changer. The necessity to solve problems of poverty (energy poverty) and inequality, as well as growth and climate change mitigation, now haunts intellectuals, forecasters, and politicians. These three problems constitute the global energy trilemma (GET). There is a wide range of forecasts, scenarios, and political plans emerging after the Paris Agreement in 2015. They demonstrate concerns about the slow progress on the matter; however, they still increase the goals for 2030–2050. The global capital formation is a key tool for changes while also representing the hard-budget investment constraints. This article examines practical features of recent trends in energy, poverty, and climate change mitigation, arguing that allocation and coordinated management of sufficient financial resources are vital for a simultaneous solution of GET. No group of countries can hope to solve each of the Sustainable Development Goals (SDG) separately. The global economy has reached the point where it has an urgent need for cooperation.


2015 ◽  
Vol 6 (2) ◽  
pp. 447-460 ◽  
Author(s):  
K. Frieler ◽  
A. Levermann ◽  
J. Elliott ◽  
J. Heinke ◽  
A. Arneth ◽  
...  

Abstract. Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.


Sign in / Sign up

Export Citation Format

Share Document