scholarly journals Hematite/Graphitic Carbon Nitride Nanofilm for Fenton and Photocatalytic Oxidation of Methylene Blue

2020 ◽  
Vol 12 (7) ◽  
pp. 2866
Author(s):  
Sangbin Lee ◽  
Jae-Woo Park

Hematite (α-Fe2O3)/graphitic carbon nitride (g-C3N4) nanofilm catalysts were synthesized on fluorine-doped tin oxide glass by hydrothermal and chemical vapor deposition. Scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the synthesized catalyst showed that the nanoparticles of g-C3N4 were successfully deposited on α-Fe2O3 nanofilm. The methylene blue degradation efficiency of the α-Fe2O3/g-C3N4 composite catalyst was 2.6 times greater than that of the α-Fe2O3 single catalyst under ultraviolet (UV) irradiation. The methylene blue degradation rate by the α-Fe2O3/g-C3N4 catalyst increased by 6.5 times after 1 mM of hydrogen peroxide (H2O2) was added. The photo-Fenton reaction of the catalyst, UV, and H2O2 greatly increased the methylene blue degradation. The results from the scavenger experiment indicated that the main reactants in the methylene blue decomposition reaction are superoxide radicals photocatalytically generated by g-C3N4 and hydroxyl radicals generated by the photo-Fenton reaction. The α-Fe2O3/g-C3N4 nanofilm showed excellent reaction rate constants at pH 3 (Ka = 6.13 × 10−2 min−1), and still better efficiency at pH 7 (Ka = 3.67 × 10−2 min−1), compared to other methylene blue degradation catalysts. As an immobilized photo-Fenton catalyst without iron sludge formation, nanostructured α-Fe2O3/g-C3N4 are advantageous for process design compared to particle-type catalysts.

2014 ◽  
Vol 27 ◽  
pp. 966-974 ◽  
Author(s):  
Dongying Fu ◽  
Gaoyi Han ◽  
Feifei Liu ◽  
Yaoming Xiao ◽  
Hongfei Wang ◽  
...  

2020 ◽  
Vol 13 (07) ◽  
pp. 2051045
Author(s):  
Kaicheng Yue ◽  
Zhaoqian Yan ◽  
Zhihao Sun ◽  
Anran Li ◽  
Lei Qian

In this work, graphitic carbon nitride (g-C3N4) was modified by Pd nanoparticles (Pd-CN) to prepare an efficient cathode catalyst for Li-O2 batteries. The specific surface area of g-C3N4 was improved to 239.56[Formula: see text]m2/g by two-steps thermal polymerization. Pd nanoparticles were loaded onto the g-C3N4 by K2PdCl4 reduction with NaBH4. The resulted Pd-CN composites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscope, and transmission electron microscope. The results proved that g-C3N4 showed three-dimensional layered and porous structure, and Pd nanoparticles were successfully supported on it. The Li-O2 batteries using Pd-CN composites as cathode catalysts were assembled and tested. The maximum initial discharge specific capacity reached 26,614[Formula: see text]mAh[Formula: see text]g[Formula: see text] at current density of 100[Formula: see text]mA[Formula: see text]g[Formula: see text]. The electrodes remained large capacity under high current density, meaning excellent rate capability. Li-O2 batteries containing Pd-CN cathode were continuously cycled for 70 cycles with no loss of capacity and obvious change in the terminal voltage. These electrochemical results indicated that the loading Pd nanoparticles effectively increased specific capacity, reduced overpotential and improved the cyclic stability. The Pd-CN composites are proved to be the promising cathode catalysts for Li-O2 batteries.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Mohanna Zarei ◽  
Jamil Bahrami ◽  
Mohammad Zarei

Abstract Zirconia (ZrO2)-modified graphitic carbon nitride (g-C3N4) nanocomposite was used for effective photodegradation of 4-nitrophenol (4-NP) in water. The ZrO2 nanoparticles, g-C3N4 nanosheets, and ZrO2/g-C3N4 nanocomposite were well characterized by including N2 adsorption, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy methods. ZrO2/g-C3N4 nanocomposites were formed at room temperature using sonication and used for effective for photodegradation of 4-NP under irradiation with visible light. The nanocomposite samples resulted in a significant increase in photocatalytic activity compared with single-component samples of g-C3N4. In particular, the ZrO2/g-C3N4 nanocomposite exhibited the significant increase in the photocatalytic activity. The ZrO2/g-C3N4 nanocomposite showed an excellent catalytic activity toward the reduction of 4-NP in aqueous medium. Further, ZrO2/g-C3N4 nanocomposite can be reused several times for photocatalytic degradation as well as for 4-NP adsorption.


NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050079
Author(s):  
Xuelei Li ◽  
Jinfeng Bai ◽  
Jiaqi Li ◽  
Chao Li ◽  
Junru Zhang ◽  
...  

In this study, nitrogen-deficient graphitic carbon nitride (M-LS-g-C3N4) with a mesoporous structure and a large specific surface area was obtained by calcination after melt pretreatment using urea as a precursor. X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-Vis, ESR and photoluminescence (PL) were used to characterize the structure, morphology and optical performance of the samples. The TEM results showed the formation of a mesoporous structure on the 0.1[Formula: see text]M-LS-g-C3N4 surface. The porous structure led to an increase in the specific surface area from 41.5[Formula: see text]m2/g to 124.3[Formula: see text]m2/g. The UV-Vis results showed that nitrogen vacancies generated during the modification process reduced the band gap of g-C3N4 and improved the visible light absorption. The PL spectra showed that the nitrogen defects promoted the separation of photogenerated electron–hole pairs. In the visible light degradation of methyl orange (MO), the reaction rate constant of 0.1[Formula: see text]M-LS-g-C3N4 reached 0.0086[Formula: see text][Formula: see text], which was 5.05 times that of pure g-C3N4. Superoxide radicals and photogenerated holes were found to be the main active species in the reaction system. This study provides an efficient, green and convenient means of preparing graphitic carbon nitride with a large specific surface area.


2018 ◽  
Vol 9 ◽  
pp. 353-363 ◽  
Author(s):  
Lan Ching Sim ◽  
Jing Lin Wong ◽  
Chen Hong Hak ◽  
Jun Yan Tai ◽  
Kah Hon Leong ◽  
...  

Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) results revealed new signals for carbonyl and carboxyl groups originating from the CDs in CD/g-C3N4 composites while X-ray diffraction (XRD) results showed distortion of the host matrix after incorporating CDs into g-C3N4. Both analyses signified the interaction between g-C3N4 and CDs. The photoluminescence (PL) analysis indicated that the presence of too many CDs will create trap states at the CD/g-C3N4 interface, decelerating the electron (e−) transport. However, the CD/g-C3N4(0.5) composite with the highest coverage of CDs still achieved the best bisphenol A (BPA) degradation rate at 3.87 times higher than that of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet–visible diffuse reflectance spectra (UV–vis DRS) results. Although the CDs did not display upconversion photoluminescence (UCPL) properties, the π-conjugated CDs served as a photosensitizer (like organic dyes) to sensitize g-C3N4 and injected electrons to the conduction band (CB) of g-C3N4, resulting in the extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the superoxide anion radical (O2 •−) and holes (h+) after performing multiple scavenging tests.


RSC Advances ◽  
2016 ◽  
Vol 6 (30) ◽  
pp. 24976-24984 ◽  
Author(s):  
Biswajit Choudhury ◽  
P. K. Giri

Isotype heterostructure of bulk and nanosheets of graphitic carbon nitride with effective band gap of 2.62 eV and charge carrier mean lifetime of 21 ns exhibits an efficient visible light photocatalysis.


ChemSusChem ◽  
2017 ◽  
Vol 10 (22) ◽  
pp. 4451-4456 ◽  
Author(s):  
Min Zhou ◽  
Pengju Yang ◽  
Rusheng Yuan ◽  
Abdullah M. Asiri ◽  
Muhammad Wakeel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document