scholarly journals Recent Developments of Exploration and Detection of Shallow-Water Hydrothermal Systems

2020 ◽  
Vol 12 (21) ◽  
pp. 9109
Author(s):  
Zhujun Zhang ◽  
Wei Fan ◽  
Weicheng Bao ◽  
Chen-Tung A Chen ◽  
Shuo Liu ◽  
...  

A hydrothermal vent system is one of the most unique marine environments on Earth. The cycling hydrothermal fluid hosts favorable conditions for unique life forms and novel mineralization mechanisms, which have attracted the interests of researchers in fields of biological, chemical and geological studies. Shallow-water hydrothermal vents located in coastal areas are suitable for hydrothermal studies due to their close relationship with human activities. This paper presents a summary of the developments in exploration and detection methods for shallow-water hydrothermal systems. Mapping and measuring approaches of vents, together with newly developed equipment, including sensors, measuring systems and water samplers, are included. These techniques provide scientists with improved accuracy, efficiency or even extended data types while studying shallow-water hydrothermal systems. Further development of these techniques may provide new potential for hydrothermal studies and relevant studies in fields of geology, origins of life and astrobiology.

1994 ◽  
Vol 04 (04) ◽  
pp. 533-556 ◽  
Author(s):  
V. AGOSHKOV ◽  
E. OVCHINNIKOV ◽  
A. QUARTERONI ◽  
F. SALERI

This paper deals with time-advancing schemes for shallow water equations. We review some of the existing numerical approaches, propose new schemes and investigate their stability. We present numerical results obtained using the time-advancing schemes proposed, with finite element and finite difference approximation in space variables.


2021 ◽  
Vol 11 (22) ◽  
pp. 10519
Author(s):  
Nguyễn Hoàng Ly ◽  
Sang Jun Son ◽  
Ho Hyun Kim ◽  
Sang-Woo Joo

Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.


Author(s):  
Mohd Javaid ◽  
Abid Haleem ◽  
Ravi Pratap Singh ◽  
Rajiv Suman

Artificial intelligence (AI) contributes to the recent developments in Industry 4.0. Industries are focusing on improving product consistency, productivity and reducing operating costs, and they want to achieve this with the collaborative partnership between robotics and people. In smart industries, hyperconnected manufacturing processes depend on different machines that interact using AI automation systems by capturing and interpreting all data types. Smart platforms of automation can play a decisive role in transforming modern production. AI provides appropriate information to take decision-making and alert people of possible malfunctions. Industries will use AI to process data transmitted from the Internet of things (IoT) devices and connected machines based on their desire to integrate them into their equipment. It provides companies with the ability to track their entire end-to-end activities and processes fully. This literature review-based paper aims to brief the vital role of AI in successfully implementing Industry 4.0. Accordingly, the research objectives are crafted to facilitate researchers, practitioners, students and industry professionals in this paper. First, it discusses the significant technological features and traits of AI, critical for Industry 4.0. Second, this paper identifies the significant advancements and various challenges enabling the implementation of AI for Industry 4.0. Finally, the paper identifies and discusses significant applications of AI for Industry 4.0. With an extensive review-based exploration, we see that the advantages of AI are widespread and the need for stakeholders in understanding the kind of automation platform they require in the new manufacturing order. Furthermore, this technology seeks correlations to avoid errors and eventually to anticipate them. Thus, AI technology is gradually accomplishing various goals of Industry 4.0.


Elements ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 389-394
Author(s):  
Esther M. Schwarzenbach ◽  
Matthew Steele-MacInnis

Seawater interaction with the oceanic lithosphere crucially impacts on global geochemical cycles, controls ocean chemistry over geologic time, changes the petrophysical properties of the oceanic lithosphere, and regulates the global heat budget. Extensive seawater circulation is expressed near oceanic ridges by the venting of hydrothermal fluids through chimney structures. These vent fluids vary greatly in chemistry, from the metal-rich, acidic fluids that emanate from “black smokers” at temperatures up to 400 °C to the metal-poor, highly alkaline and reducing fluids that issue from the carbonate–brucite chimneys of ultramafic-hosted systems at temperatures below 110 °C. Mid-ocean ridge hydrothermal systems not only generate signifi-cant metal resources but also host unique life forms that may be similar to those of early Earth.


Author(s):  
Nicola Lacey ◽  
Lucia Zedner

This chapter examines the relationship between legal and criminological constructions of crime and explores how these have changed over time. The chapter sets out the conceptual framework of criminalization within which the two dominant constructions of crime—legal and criminological—are situated. It considers their respective contributions and the close relationship between criminal law and criminal justice. Using the framework of criminalization, the chapter considers the historical contingency of crime by examining its development over the past 300 hundred years. It analyses the normative building blocks of contemporary criminal law to explain how crime is constructed in England and Wales today and it explores some of the most important recent developments in formal criminalization in England and Wales, not least the shifting boundaries and striking expansion of criminal liability. Finally, it considers the valuable contributions made by criminology to understanding the scope of, and limits on, criminalization.


1984 ◽  
Vol 1 (19) ◽  
pp. 82 ◽  
Author(s):  
Y. Coeffe ◽  
S. Dal Secco ◽  
P. Esposito ◽  
B. Latteux

The paper reports the current progress in developing a finite element method for the shallow water equations. Some recent developments as the implementation of a semi implicit scheme or the use of an incident wave condition are described. Different realistic applications are presented concerning tidal and storm surge simulations.


2018 ◽  
Vol 10 (12) ◽  
pp. 1987 ◽  
Author(s):  
Rocío Ramos-Bernal ◽  
René Vázquez-Jiménez ◽  
Raúl Romero-Calcerrada ◽  
Patricia Arrogante-Funes ◽  
Carlos Novillo

Natural hazards include a wide range of high-impact phenomena that affect socioeconomic and natural systems. Landslides are a natural hazard whose destructive power has caused a significant number of victims and substantial damage around the world. Remote sensing provides many data types and techniques that can be applied to monitor their effects through landslides inventory maps. Three unsupervised change detection methods were applied to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster)-derived images from an area prone to landslides in the south of Mexico. Linear Regression (LR), Chi-Square Transformation, and Change Vector Analysis were applied to the principal component and the Normalized Difference Vegetation Index (NDVI) data to obtain the difference image of change. The thresholding was performed on the change histogram using two approaches: the statistical parameters and the secant method. According to previous works, a slope mask was used to classify the pixels as landslide/No-landslide; a cloud mask was used to eliminate false positives; and finally, those landslides less than 450 m2 (two Aster pixels) were discriminated. To assess the landslide detection accuracy, 617 polygons (35,017 pixels) were sampled, classified as real landslide/No-landslide, and defined as ground-truth according to the interpretation of color aerial photo slides to obtain omission/commission errors and Kappa coefficient of agreement. The results showed that the LR using NDVI data performs the best results in landslide detection. Change detection is a suitable technique that can be applied for the landslides mapping and we think that it can be replicated in other parts of the world with results similar to those obtained in the present work.


Sign in / Sign up

Export Citation Format

Share Document