scholarly journals Evaluation of Unsupervised Change Detection Methods Applied to Landslide Inventory Mapping Using ASTER Imagery

2018 ◽  
Vol 10 (12) ◽  
pp. 1987 ◽  
Author(s):  
Rocío Ramos-Bernal ◽  
René Vázquez-Jiménez ◽  
Raúl Romero-Calcerrada ◽  
Patricia Arrogante-Funes ◽  
Carlos Novillo

Natural hazards include a wide range of high-impact phenomena that affect socioeconomic and natural systems. Landslides are a natural hazard whose destructive power has caused a significant number of victims and substantial damage around the world. Remote sensing provides many data types and techniques that can be applied to monitor their effects through landslides inventory maps. Three unsupervised change detection methods were applied to the Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster)-derived images from an area prone to landslides in the south of Mexico. Linear Regression (LR), Chi-Square Transformation, and Change Vector Analysis were applied to the principal component and the Normalized Difference Vegetation Index (NDVI) data to obtain the difference image of change. The thresholding was performed on the change histogram using two approaches: the statistical parameters and the secant method. According to previous works, a slope mask was used to classify the pixels as landslide/No-landslide; a cloud mask was used to eliminate false positives; and finally, those landslides less than 450 m2 (two Aster pixels) were discriminated. To assess the landslide detection accuracy, 617 polygons (35,017 pixels) were sampled, classified as real landslide/No-landslide, and defined as ground-truth according to the interpretation of color aerial photo slides to obtain omission/commission errors and Kappa coefficient of agreement. The results showed that the LR using NDVI data performs the best results in landslide detection. Change detection is a suitable technique that can be applied for the landslides mapping and we think that it can be replicated in other parts of the world with results similar to those obtained in the present work.

2015 ◽  
Vol 8 (2) ◽  
pp. 327-335 ◽  
Author(s):  
Daniel Hölbling ◽  
Barbara Friedl ◽  
Clemens Eisank

Abstract Earth observation (EO) data are very useful for the detection of landslides after triggering events, especially if they occur in remote and hardly accessible terrain. To fully exploit the potential of the wide range of existing remote sensing data, innovative and reliable landslide (change) detection methods are needed. Recently, object-based image analysis (OBIA) has been employed for EO-based landslide (change) mapping. The proposed object-based approach has been tested for a sub-area of the Baichi catchment in northern Taiwan. The focus is on the mapping of landslides and debris flows/sediment transport areas caused by the Typhoons Aere in 2004 and Matsa in 2005. For both events, pre- and post-disaster optical satellite images (SPOT-5 with 2.5 m spatial resolution) were analysed. A Digital Elevation Model (DEM) with 5 m spatial resolution and its derived products, i.e., slope and curvature, were additionally integrated in the analysis to support the semi-automated object-based landslide mapping. Changes were identified by comparing the normalised values of the Normalized Difference Vegetation Index (NDVI) and the Green Normalized Difference Vegetation Index (GNDVI) of segmentation-derived image objects between pre- and post-event images and attributed to landslide classes.


Author(s):  
Djamel Bouchaffra ◽  
Faycal Ykhlef

The need for environmental protection, monitoring, and security is increasing, and land cover change detection (LCCD) can aid in the valuation of burned areas, the study of shifting cultivation, the monitoring of pollution, the assessment of deforestation, and the analysis of desertification, urban growth, and climate change. Because of the imminent need and the availability of data repositories, numerous mathematical models have been devised for change detection. Given a sample of remotely sensed images from the same region acquired at different dates, the models investigate if a region has undergone change. Even if there is no substantial advantage to using pixel-based classification over object-based classification, a pixel-based change detection approach is often adopted. A pixel can encompass a large region, and it is imperative to determine whether this pixel (input) has changed or not. A changed image is compared to the available ground truth image for pixel-based performance evaluation. Some existing change detection systems do not take into account reversible changes due to seasonal weather effects. In other words, when snow falls in a region, the land cover is not considered as a change because it is seasonal (reversible). Some approaches exploit time series of Landsat images, which are based on the Normalized Difference Vegetation Index technique. Others evaluate built-up expansion to assess urban morphology changes using an unsupervised approach that relies on labels clustering. Change detection methods have also been applied to the field of disaster management using object-oriented image classification. Some methodologies are based on spectral mixture analysis. Other techniques invoke a similarity measure based on the evolution of the local statistics of the image between two dates for vegetation LCCD. Probabilistic approaches based on maximum entropy have been applied to vegetation and forest areas, such as Hustai National Park in Mongolia. Researchers in this field have proposed an LCCD scheme based on a feed-forward neural network using backpropagation for training. This paper invokes the new concept of homology theory, a subfield of algebraic topology. Homology theory is incorporated within a Structural Hidden Markov Model.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


Author(s):  
S. Su ◽  
T. Nawata ◽  
T. Fuse

Abstract. Automatic building change detection has become a topical issue owing to its wide range of applications, such as updating building maps. However, accurate building change detection remains challenging, particularly in urban areas. Thus far, there has been limited research on the use of the outdated building map (the building map before the update, referred to herein as the old-map) to increase the accuracy of building change detection. This paper presents a novel deep-learning-based method for building change detection using bitemporal aerial images containing RGB bands, bitemporal digital surface models (DSMs), and an old-map. The aerial images have two types of spatial resolutions, 12.5 cm or 16 cm, and the cell size of the DSMs is 50 cm × 50 cm. The bitemporal aerial images, the height variations calculated using the differences between the bitemporal DSMs, and the old-map were fed into a network architecture to build an automatic building change detection model. The performance of the model was quantitatively and qualitatively evaluated for an urban area that covered approximately 10 km2 and contained over 21,000 buildings. The results indicate that it can detect the building changes with optimum accuracy as compared to other methods that use inputs such as i) bitemporal aerial images only, ii) bitemporal aerial images and bitemporal DSMs, and iii) bitemporal aerial images and an old-map. The proposed method achieved recall rates of 89.3%, 88.8%, and 99.5% for new, demolished, and other buildings, respectively. The results also demonstrate that the old-map is an effective data source for increasing building change detection accuracy.


2012 ◽  
Vol 23 (2) ◽  
pp. 139-172
Author(s):  
Abdullah Salman Alsalman Abdullah Salman Alsalman

Noting that Khartoum represents the most rapidly expanding city in the Sudan and taking into account that change detection operations are seldom , the present study has been initiated to attempt to produce work that synthesizes land use/land cover (LULC) to investigate change detection using GIS, remote sensing data and digital image processing techniques; estimate, evaluate and map changes that took place in the city from 1975 to 2003. The experiment used the techniques of visual inspection, write-function-memoryinsertion, image differencing, image transformation i.e. normalized difference vegetation index (NDVI), tasseled cap, principal component analysis (PCA), post-classification comparison and GIS. The results of all these various techniques were used by the authors to study change detection of the geographic locale of the test area. Image processing and GIS techniques were performed using Intergraph Image analyst 8.4 and GeoMedia professional version 6, ERDAS Imagine 8.7, and ArcGIS 9.2. Results obtained were discussed and analyzed in a comparative manner and a conclusion regarding the best method for change detection of the test area was derived.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


2020 ◽  
Vol 492 (4) ◽  
pp. 5709-5720
Author(s):  
Loic Nassif-Lachapelle ◽  
Daniel Tamayo

ABSTRACT Direct imaging surveys have found that long-period super-Jupiters are rare. By contrast, recent modelling of the widespread gaps in protoplanetary discs revealed by Atacama Large Millimetre Array suggests an abundant population of smaller Neptune to Jupiter-mass planets at large separations. The thermal emission from such lower-mass planets is negligible at optical and near-infrared wavelengths, leaving only their weak signals in reflected light. Planets do not scatter enough light at these large orbital distances, but there is a natural way to enhance their reflecting area. Each of the four giant planets in our Solar system hosts swarms of dozens of irregular satellites, gravitationally captured planetesimals that fill their host planets’ spheres of gravitational influence. What we see of them today are the leftovers of an intense collisional evolution. At early times, they would have generated bright circumplanetary debris discs. We investigate the properties and detectability of such irregular satellite discs (ISDs) following models for their collisional evolution from Kennedy & Wyatt (2011). We find that the scattered light signals from such ISDs would peak in the 10–100 au semimajor axis range implied by ALMA, and can render planets detectable over a wide range of parameters with upcoming high-contrast instrumentation. We argue that future instruments with wide fields of view could simultaneously characterize the atmospheres of known close-in planets, and reveal the population of long-period Neptune–Jupiter mass exoplanets inaccessible to other detection methods. This provides a complementary and compelling science case that would elucidate the early lives of planetary systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yaojun Hao ◽  
Fuzhi Zhang ◽  
Jian Wang ◽  
Qingshan Zhao ◽  
Jianfang Cao

Due to the openness of the recommender systems, the attackers are likely to inject a large number of fake profiles to bias the prediction of such systems. The traditional detection methods mainly rely on the artificial features, which are often extracted from one kind of user-generated information. In these methods, fine-grained interactions between users and items cannot be captured comprehensively, leading to the degradation of detection accuracy under various types of attacks. In this paper, we propose an ensemble detection method based on the automatic features extracted from multiple views. Firstly, to collaboratively discover the shilling profiles, the users’ behaviors are analyzed from multiple views including ratings, item popularity, and user-user graph. Secondly, based on the data preprocessed from multiple views, the stacked denoising autoencoders are used to automatically extract user features with different corruption rates. Moreover, the features extracted from multiple views are effectively combined based on principal component analysis. Finally, according to the features extracted with different corruption rates, the weak classifiers are generated and then integrated to detect attacks. The experimental results on the MovieLens, Netflix, and Amazon datasets indicate that the proposed method can effectively detect various attacks.


Author(s):  
R. Qin ◽  
A. Gruen

There is a great demand for studying the changes of buildings over time. The current trend for building change detection combines the orthophoto and DSM (Digital Surface Models). The pixel-based change detection methods are very sensitive to the quality of the images and DSMs, while the object-based methods are more robust towards these problems. In this paper, we propose a supervised method for building change detection. After a segment-based SVM (Support Vector Machine) classification with features extracted from the orthophoto and DSM, we focus on the detection of the building changes of different periods by measuring their height and texture differences, as well as their shapes. A decision tree analysis is used to assess the probability of change for each building segment and the traffic lighting system is used to indicate the status "change", "non-change" and "uncertain change" for building segments. The proposed method is applied to scanned aerial photos of the city of Zurich in 2002 and 2007, and the results have demonstrated that our method is able to achieve high detection accuracy.


Author(s):  
Zhenlei Xie ◽  
Ruoming Shi ◽  
Ling Zhu ◽  
Shu Peng ◽  
Xu Chen

Change detection method is an efficient way in the aim of land cover product updating on the basis of the existing products, and at the same time saving lots of cost and time. Considering the object-oriented change detection method for 30m resolution Landsat image, analysis of effect of different segmentation scales on the method of the object-oriented is firstly carried out. On the other hand, for analysing the effectiveness and availability of pixel-based change method, the two indices which complement each other are the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) were used. To demonstrate the performance of pixel-based and object-oriented, accuracy assessment of these two change detection results will be conducted by four indicators which include overall accuracy, omission error, commission error and Kappa coefficient.


Sign in / Sign up

Export Citation Format

Share Document