scholarly journals Design for and from Recycling: A Circular Ecodesign Approach to Improve the Circular Economy

2020 ◽  
Vol 12 (23) ◽  
pp. 9861
Author(s):  
Jorge Martínez Leal ◽  
Stéphane Pompidou ◽  
Carole Charbuillet ◽  
Nicolas Perry

In the context of a circular economy, one can observe that (i) recycling chains are not adapted enough to the end-of-life products they have to process and that (ii) products are not sufficiently well designed either to integrate at best their target recycling chain. Therefore, a synergy between product designers and recycling-chains stakeholders is lacking, mainly due to their weak communication and the time-lag between the product design phase and its end-of-life treatment. Many Design for Recycling approaches coexist in the literature. However, to fully develop a circular economy, Design from Recycling also has to be taken into account. Thus Re-Cycling, a complete circular design approach, is proposed. First, a design for recycling methodology linking recyclability assessment to product design guidelines is proposed. Then, a design from recycling methodology is developed to assess the convenience of using secondary raw materials in the design phase. The recyclability of a smartphone and the convenience of using recycled materials in a new cycle are both analyzed to demonstrate our proposal. The Fairphone 2® and its treatment by the WEEE French takeback scheme are used as a case study.

2020 ◽  
Vol 12 (9) ◽  
pp. 3679 ◽  
Author(s):  
Sasha Shahbazi ◽  
Anna Karin Jönbrink

Product design and development are key to moving towards a circular economy; however, the majority of products and components that are currently recirculated have not been designed for circulation of any sort. Circular economy business models and closing the loop can be functional only if the products and services are designed for circularity. This paper presents a set of generic design guidelines for different circular strategies. The guidelines are then used to map companies’ circular product design initiatives in the early stages of product design and development. The guidelines have proved to support decision-making and enhance the circularity of products. The guidelines were developed, validated, and tested at four companies within the Nordic countries through an action research approach. Sourcing raw materials, recycling, and ensuring the robustness of products for the use phase are the most common strategies used by the studied companies. There is an ongoing transition towards other recirculation strategies, such as repair, remanufacture, and reuse.


2021 ◽  
Vol 13 (16) ◽  
pp. 9039
Author(s):  
Sasha Shahbazi ◽  
Kerstin Johansen ◽  
Erik Sundin

Remanufacturing is one of the main practices toward a circular economy and industrial sustainability. Remanufacturing is highly dependent on how circular products are designed and developed. Remanufacturing can also benefit from automation for efficiency, accuracy and flexibility. This paper, via a multiple case study, connects the three areas of remanufacturing, product design and automation and investigates how circular product design can facilitate automation remanufacturing processes. First, circular product design guidelines are discussed with regard to remanufacturing. Second, potential areas for automation at three remanufacturers of electric and electronic equipment are pinpointed. Finally, design guidelines are connected to the identified potential automation areas in each remanufacturing process and discussed together. According to our results, the main incentives for automating remanufacturing processes are mainly related to the work environment, efficiency and quality. In addition, several design guidelines can facilitate automated remanufacturing processes; for instance, the standardization of components, fasteners and remanufacturing tools across different models and brands can also facilitate automated remanufacturing, where products can easily and nondestructively be disassembled by a robot or a machine.


2021 ◽  
Vol 13 (3) ◽  
pp. 1036
Author(s):  
Siri Willskytt

Consumable products have received less attention in the circular economy (CE), particularly in regard to the design of resource-efficient products. This literature review investigates the extent to which existing design guidelines for resource-efficient products are applicable to consumables. This analysis is divided into two parts. The first investigates the extent to which general product-design guidelines (i.e., applicable to both durables and consumables) are applicable to consumables. This analysis also scrutinizes the type of recommendations presented by the ecodesign and circular product design, to investigate the novel aspects of the CE in product design. The second analysis examines the type of design considerations the literature on product-type specific design guidelines recommends for specific consumables and whether such guidelines are transferable. The analysis of general guidelines showed that, although guidelines are intended to be general and applicable to many types of products, their applicability to consumable products is limited. Less than half of their recommendations can be applied to consumables. The analysis also identified several design considerations that are transferable between product-specific design guidelines. This paper shows the importance of the life-cycle perspective in product design, to maximize the opportunities to improve consumables.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2306 ◽  
Author(s):  
Christos Vlachokostas ◽  
Charisios Achillas ◽  
Ioannis Agnantiaris ◽  
Alexandra V. Michailidou ◽  
Christos Pallas ◽  
...  

Lately, the model of circular economy has gained worldwide interest. Within its concept, waste is viewed as a beneficial resource that needs to be re-introduced in the supply chains, which also requires the use of raw materials, energy, and water to be minimized. Undeniably, a strong link exists between the bioeconomy, circular economy, bioproducts, and bioenergy. In this light, in order to promote a circular economy, a range of alternative options and technologies for biowaste exploitation are currently available. In this paper, we propose a generic methodological scheme for the development of small, medium, or large-scale units of alternative biowaste treatment, with an emphasis on the production of bioenergy and other bioproducts. With the use of multi-criteria decision analysis, the model simultaneously considers environmental, economic, and social criteria to support robust decision-making. In order to validate the methodology, the latter was demonstrated in a real-world case study for the development of a facility in the region of Serres, Greece. Based on the proposed methodological scheme, the optimal location of the facility was selected, based on its excellent assessment in criteria related to environmental performance, financial considerations, and local acceptance. Moreover, anaerobic digestion of agricultural residues, together with farming and livestock wastes, was recommended in order to produce bioenergy and bioproducts.


2020 ◽  
Vol 8 ◽  
Author(s):  
Duygu Karabelli ◽  
Steffen Kiemel ◽  
Soumya Singh ◽  
Jan Koller ◽  
Simone Ehrenberger ◽  
...  

The growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).


Author(s):  
Samyeon Kim ◽  
Seung Ki Moon

As technology pushes customers to buy new released products, especially mobile phone, high product replacement from the customers plays a role in increasing production rate for new products and rate of abandoned products. It accelerates environmental degradation like natural resource usage for the new products and pollutions generated by disposing the abandoned products. In this respect, product recovery is needed to reduce landfill rates, and resource usages, and prolong product lifecycle. Modular drivers such as interface design, material type, and components’ lifespan are applied to design modules for product recovery. The objective of this research is to support designers to assess initial modules and then reorganize modules for product recovery. First, according to conventional modular product design, the initial modules are generated. Then, since it is difficult to estimate how much the modules have negative effects on environment, the environmental impacts of a product are assessed by Eco-Indicator 99 based on used materials. Also, the complexity of the interface design is measured to understand how the modules are easily disassembled for upgrading and maintaining end-of-life products by using weighted-modular complexity score (wMCS). After assessing the product based on the Eco-Indicator 99 and wMCS, we apply new design guidelines to improve sustainability of a product in the end of life stage. Consequently, we compare the extent to design for sustainability before and after redesigning a product based on the design guideline. To demonstrate the effectiveness of the modular product design, we carry out a case study with a coffee maker.


2021 ◽  
Author(s):  
Arthur Messias Sodré Cunha ◽  
Jully do Nascimento Germano ◽  
Gustavo Tavares Machado ◽  
Frank Pavan de Souza

The main proposal of the circular economy is to change the concept of "garbage" fromWaste that was structured in this project and replaced by a continuous and cyclical vision of the production, in which resources are no longer just explored and discarded and are now reused in a new Cycle. The Circular Economy encourages new management practices, creating opportunities and value for organizations in harmony with the environment. This article aims to analyze the feasibility of implementing Circular Economy methods, with an emphasis on controlling scrap disposal in the Açu Port Complex (São Joãoda Barra/RJ), bringing sustainable alternatives to Waste Management. In addition to evaluating its environmental and economic efficiency, it proposes to end the linear production process and reinsert waste into the production cycle to minimize environmental treatment and the extraction of raw materials. The investigation will start through specific exploratory research, bringing as a consequence, possible economic alternatives for the reuse of these materials. The research is also classified as descriptiveand case study since a survey of real information on waste management in the Açu Port Complex will be carried out. It is hoped through this research to demonstrate how the circular economy can contribute to economic, social, and environmental development when used in an interdisciplinary way by productive activities.


Sign in / Sign up

Export Citation Format

Share Document