scholarly journals Embodied CO2 Reduction Effects of Composite Precast Concrete Frame for Heavily Loaded Long-Span Logistics Buildings

2021 ◽  
Vol 13 (3) ◽  
pp. 1060
Author(s):  
Seunghyun Son ◽  
Kwangheon Park ◽  
Heni Fitriani ◽  
Sunkuk Kim

For heavily loaded long-span (HLS) logistics buildings, embodied CO2 (ECO2) of a structural frame accounts for more than 80% of the CO2 emissions of the entire building. To realize a sustainable structure from the CO2 perspective, an innovative construction method that reduces ECO2 of a structural frame is required. Through studies conducted over several years, we have developed a SMART (Sustainable, Measurable, Attainable, Reliable, and Timely) frame that is a steel connected composite precast concrete (CPC) frame that significantly reduces not only construction time and cost but also ECO2. If a SMART frame is applied to HLS logistics buildings, ECO2 reduction effects are expected to be substantial. To prove this, this study aims to analyze ECO2 reduction effects of the CPC frame for HLS logistics buildings. An HLS logistics building constructed with the existing precast concrete (PC) frame was selected as a case project. Thereafter, the typical PC girder was redesigned using the SMART frame; then, analysis was conducted on the quantity take-off of resources, such as form, rebar, steel, and concrete, as well as on ECO2 and production cost. As a result of the analysis, in the case of a single typical girder of the SMART frame, 730 kg-ECO2, which accounts for 9.52% of the CO2 emissions, was reduced compared to that of the existing PC frame. If only the typical girders of the case project are applied, a relatively larger quantity of 465 ton-ECO2 will be reduced. The results of this study will contribute in securing structural stability, as well as achieving a sustainable structure that leads to an unprecedented reduction of ECO2.

2020 ◽  
Vol 26 (2) ◽  
pp. 160-174
Author(s):  
Ho-Haeng Lee ◽  
Ki-Ho Kim ◽  
Seunghyun Son ◽  
Kwangheon Park ◽  
Sunkuk Kim

The characteristics of large logistics buildings are their long spans and the ability to take heavy loads. Usually, PC components are used for their frames to ensure quick construction. However, the erection of most pin jointed PC structures increases the time and the cost incurred for ensuring structural stability and construction safety. To solve this problem, “smart” frames have been developed, which have tapered steel joints at both ends of the PC components. A smart frame with the moment frame concept not only assures structural stability and construction safety, but it also simplifies and quickens the erection because of its tapered joint detail. The purpose of this study is to compare the erection time and cost effects of the steel connected PC components for heavily loaded long-span logistics buildings with the existing PC frames. For this study, we selected a logistics building constructed with PC components and redesigned it as the smart frame, and the erection simulations were performed. We analyzed the time reduction effects of the smart frame. Our results confirmed that the use of the smart frame reduced the erection time and cost practically. Our investigations will help develop the erection simulation algorithms for smart frames.


2021 ◽  
Vol 13 (4) ◽  
pp. 2225
Author(s):  
Ralf Peters ◽  
Janos Lucian Breuer ◽  
Maximilian Decker ◽  
Thomas Grube ◽  
Martin Robinius ◽  
...  

Achieving the CO2 reduction targets for 2050 requires extensive measures being undertaken in all sectors. In contrast to energy generation, the transport sector has not yet been able to achieve a substantive reduction in CO2 emissions. Measures for the ever more pressing reduction in CO2 emissions from transportation include the increased use of electric vehicles powered by batteries or fuel cells. The use of fuel cells requires the production of hydrogen and the establishment of a corresponding hydrogen production system and associated infrastructure. Synthetic fuels made using carbon dioxide and sustainably-produced hydrogen can be used in the existing infrastructure and will reach the extant vehicle fleet in the medium term. All three options require a major expansion of the generation capacities for renewable electricity. Moreover, various options for road freight transport with light duty vehicles (LDVs) and heavy duty vehicles (HDVs) are analyzed and compared. In addition to efficiency throughout the entire value chain, well-to-wheel efficiency and also other aspects play an important role in this comparison. These include: (a) the possibility of large-scale energy storage in the sense of so-called ‘sector coupling’, which is offered only by hydrogen and synthetic energy sources; (b) the use of the existing fueling station infrastructure and the applicability of the new technology on the existing fleet; (c) fulfilling the power and range requirements of the long-distance road transport.


1970 ◽  
Vol 96 (3) ◽  
pp. 637-661
Author(s):  
Harold W. Conner ◽  
Paul H. Kaar ◽  
W. Gene Corley

Author(s):  
Tobias Huber ◽  
Stephan Fasching ◽  
Johann Kollegger

<p>Segmental bridge construction combines the advantages of prefabrication, for example the reduction of construction time and very high product quality, with those of common bridge erecting methods. Short precast segments are assembled and prestressed to form the complete superstructure. New methods divide these segments into prefabricated elements to create new lighter versions of the segments. For this to work, new joint types must be developed which can ensure the force transfer between the segments. In this paper, several methods, including a new concept for joining thin-walled pre-fabricated elements, are described. Push-off tests with a constant lateral force were carried out to assess the shear strength and deformation behaviour. The main parameters were the joint type (wet joints: plain, grooved, keyed; dry joints), the mortar type, and the level of lateral force. In this paper, the test results are presented and recalculations with a design code are shown.</p>


2018 ◽  
Vol 8 (10) ◽  
pp. 1871 ◽  
Author(s):  
Xueyuan Yan ◽  
Suguo Wang ◽  
Canling Huang ◽  
Ai Qi ◽  
Chao Hong

Precast monolithic structures are increasingly applied in construction. Such a structure has a performance somewhere between that of a pure precast structure and that of a cast-in-place structure. A precast concrete frame structure is one of the most common prefabricated structural systems. The post-pouring joint is important for controlling the seismic performance of the entire precast monolithic frame structure. This paper investigated the joints of a precast prestressed concrete frame structure. A reversed cyclic loading test was carried out on two precast prestressed concrete beam–column joints that were fabricated with two different concrete strengths in the keyway area. This testing was also performed on a cast-in-place reinforced concrete joint for comparison. The phenomena such as joint crack development, yielding, and ultimate damage were observed, and the seismic performance of the proposed precast prestressed concrete joint was determined. The results showed that the precast prestressed concrete joint and the cast-in-place joint had a similar failure mode. The stiffness, bearing capacity, ductility, and energy dissipation were comparable. The hysteresis curves were full and showed that the joints had good energy dissipation. The presence of prestressing tendons limited the development of cracks in the precast beams. The concrete strength of the keyway area had little effect on the seismic performance of the precast prestressed concrete joints. The precast prestressed concrete joints had a seismic performance that was comparable to the equivalent monolithic system.


1971 ◽  
Vol 97 (9) ◽  
pp. 2424-2425
Author(s):  
Harold W. Conner ◽  
Paul H. Kaar ◽  
W. Gene Corley

Sign in / Sign up

Export Citation Format

Share Document