scholarly journals Quantitative Assessment of Energy Supply Security: Korea Case Study

2021 ◽  
Vol 13 (4) ◽  
pp. 1854
Author(s):  
Herie Park ◽  
Sungwoo Bae

Ensuring energy supply security has become one of the most important purposes for many countries. To make the strategies for ensuring the energy supply security of a country, it is essential to quantitatively assess the security. This paper aims to present a methodology to evaluate the energy supply security of a country by using different indices of energy dependence and energy diversity, which have been raised as two main paradigms of energy supply security. This study also proposes two indices reflecting the correlation between a country’s energy diversity and energy import dependence to evaluate its energy supply security based on easily accessible data. The presented methodology and indices were applied to the evaluation of the primary energy supply security of Korea from 1991 to 2018. The results show that a country highly dependent on energy imports is not evaluated as secure enough in terms of energy supply even if it obtains higher energy diversity. This finding supports the importance of the correlation of energy dependence and energy diversity of a country to ensure its energy supply security. This approach could be further adapted to other countries and help them to make their energy policy and strategies.

Author(s):  
Almas Heshmati ◽  
Shahrouz Abolhosseini

This chapter reviews relevant literature on the current state and effectiveness of developing renewable energy on energy security in general, and on energy security in the European Union (EU) in particular. The chapter elaborates on primary energy import sources, possible alternatives, and how energy security is affected by the sources of supply. It also gives an analysis of the effects of the Ukrainian crisis, the isolation of Iran on diversification sources, and on European energy security. It examines EU’s energy policy, analyses the best motivation for a new energy policy direction within Europe, and suggests alternative solutions for enhanced energy supply security. The aim is to suggest suitable solutions for energy security in Europe through energy supply diversification. Supply diversification includes alternative energy corridors for reducing dependency on Russia as a supplier and enhancing the power generated by renewable energy sources under the European Union 2020 strategy.


2005 ◽  
Vol 40 (2) ◽  
pp. 256-277 ◽  
Author(s):  
Debra Johnson

AbstractThis article explores issues of energy supply security from the perspective of the EU–Russian energy relationship and of competing foreign energy policy paradigms. Using approaches developed by Peter Rutland within the context of Russia's energy policy towards the CIS and the three pillars of EU energy policy as a starting point, the article concludes that the overall EU–Russian energy relationship can be best explained through a framework of mutual interest and dependency: that is, the EU is becoming increasingly, but not totally, dependent on Russian energy, particularly gas; and Russia is becoming increasingly, but not totally, dependent on European markets. Nevertheless, other paradigms continue to yield useful insights in relation to individual components of the EU–Russian energy relationship.


2016 ◽  
Vol 7 (1) ◽  
pp. 203-210 ◽  
Author(s):  
K. Frieler ◽  
M. Mengel ◽  
A. Levermann

Abstract. Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 °C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80 % of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mm yr−1 will exceed 7 % of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.


2018 ◽  
Vol 7 (1.6) ◽  
pp. 20 ◽  
Author(s):  
Ansari Saleh Ahmar

Humans in this world are very dependent on petroleum and energy. Petroleum and other energies are a major source in supporting human life. Regarding the reduced petroleum availability, a new energy is needed to replace the role of petroleum. Nowadays, there is much renewable energy that have been discovered and used. The purpose of this research is to predict the total primary energy supply in Indonesia by using α-Sutte Indicator and ARIMA method, and comparing those four methods which are effective in predicting data. Data from the research is renewable energy (total primary energy supply) which is obtained from OECD from 1971-2015. From the research, it is found that the α-Sutte Indicator method is more suitable to predict renewable energy (total primary energy supply) data in Indonesia compared to ARIMA (0,1,0). 


2017 ◽  
Vol 207 ◽  
pp. 465-476 ◽  
Author(s):  
Konstantinos J. Chalvatzis ◽  
Alexis Ioannidis

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Baraka Kichonge ◽  
Iddi S. N. Mkilaha ◽  
Geoffrey R. John ◽  
Sameer Hameer

The study analyzes the economics of renewable energy sources into electricity generation in Tanzania. Business as usual (BAU) scenario and renewable energy (RE) scenario which enforce a mandatory penetration of renewable energy sources shares into electricity generations were analyzed. The results show total investment cost for the BAU scenario is much lower as compared to RE scenario while operating and maintenance variable costs are higher in BAU scenario. Primary energy supply in BAU scenario is higher tied with less investment costs as compared to RE scenario. Furthermore, the share of renewable energy sources in BAU scenario is insignificant as compared to RE scenario due to mandatory penetration policy imposed. Analysis concludes that there are much higher investments costs in RE scenario accompanied with less operating and variable costs and lower primary energy supply. Sensitivity analysis carried out suggests that regardless of changes in investments cost of coal and CCGT power plants, the penetration of renewable energy technologies was still insignificant. Notwithstanding the weaknesses of renewable energy technologies in terms of the associated higher investments costs, an interesting result is that it is possible to meet future electricity demand based on domestic resources including renewables.


Author(s):  
Kathleen Araújo

This chapter explores the evolving understanding of carbon and sustainability since the 18th and 19th centuries. Relevant applications of influential ideas are then identified with respect to knowledge, innovation, policy, and meta-level change. More than 100 years ago, Swedish scientist Svante Arrhenius hypothesized about the onset of ice ages and interglacial periods by considering high latitude temperature shifts (NASA Earth Observatory, n.d.). Applying an energy budget model and ideas of other scientists, like John Tyndall, Arrhenius argued that changes in trace atmospheric constituents, particularly carbon dioxide, could significantly alter the Earth’s heat budget (Arrhenius, 1896, 1897; NASA Earth Observatory, n.d.). Today, science indicates that the global, average surface temperature has continued to rise alongside the increase in greenhouse gases. Among global GHGs, CO2 emissions have increased by more than a factor of 1,000 in absolute terms since 1800. During that time, global carbon emissions found in the primary energy supply increased by roughly 6% per year (Grubler, 2008a). This growth in carbon emissions from energy is significant because CO2 from fuel combustion dominates global GHG emissions (IEA, 2015a and 2015b; IPCC, 2013). As noted earlier, 68% of the global GHGs that are attributed to human activity are linked to the energy sector; namely, fuel combustion and fugitive emissions (IEA, 2015a). Within this share, 90% consisted of CO2 (IEA, 2015a). In contrast to the rise in absolute numbers, carbon emissions per unit of output in the global primary energy supply has decreased 36% overall or by slightly less than 0.2% per year over the past two centuries (Grubler, 2008a). This subtle decarbonizing pattern in the energy mix is explained by the faster growth rate of energy use in relation to the rate of carbon emissions from that use. The delinking of energy utilization and carbon emissions occurred in part with the introduction of less carbon-intensive fossil fuel sources, like natural gas, in which a higher hydrogen-to-carbon ratio is evident (Gibbons and Gwin, 2009; Grubler, 2004, citing Marchetti, 1985).


2021 ◽  
Author(s):  
Luisa Vargas Suarez ◽  
Jason Donev

<p>There are extensive conceptual difficulties in understanding a country’s energy story. Every country in the world uses some combination of energy production, imports, and exports energy to meet their society’s needs. Thermal inefficiencies converting primary energy into electricity further confuse the issues. A visualization using large, publicly available data can help illustrate these different energy perspectives. This data visualization helps clarify the following perspectives: Production, Imports, Exports, Total Primary Energy Supply (TPES), Total Final Consumption (TFC), and the conversion losses from turning TPES into TFC. TPES refers to the total amount of energy a country obtains directly from natural resources such as fossil fuels or wind. TFC refers to the addition of the all energy directly consumed by a user for an energy service such as electricity for lighting in a house. This paper discusses the interactive simulation that was built to allow users to explore the composition of a country’s energy production, imports and exports through the conversion into energy people consume. The simulation allows users to explore the energy stories for different countries, and how these change over the decades.</p>


Sign in / Sign up

Export Citation Format

Share Document