scholarly journals Development of Driving Simulation Scenarios Based on Building Information Modeling (BIM) for Road Safety Analysis

2021 ◽  
Vol 13 (4) ◽  
pp. 2039
Author(s):  
Juan F. Dols ◽  
Jaime Molina ◽  
F. Javier Camacho-Torregrosa ◽  
David Llopis-Castelló ◽  
Alfredo García

The analysis of road safety is critical in road design. Complying to guidelines is not enough to ensure the highest safety levels, so many of them encourage designers to virtually recreate and test their roads, benefitting from the evolution of driving simulators in recent years. However, an accurate recreation of the road and its environment represents a real bottleneck in the process. A very important limitation lies in the diversity of input data, from different sources and requiring specific adaptations for every single simulator. This paper aims at showing a framework for recreating faster virtual scenarios by using an Industry Foundation Classes (IFC)-based file. This methodology was compared to two other conventional methods for developing driving scenarios. The main outcome of this study has demonstrated that with a data exchange file in IFC format, virtual scenarios can be faster designed to carry out safety audits with driving simulators. As a result, the editing, programming, and processing times were substantially reduced using the proposed IFC exchange file format through a BIM (Building Information Modeling) model. This methodology facilitates cost-savings, execution, and optimization resources in road safety analysis.

2021 ◽  
Vol 6 (24) ◽  
pp. 278-289
Author(s):  
Wan Nor Fa’aizah Wan Abdul Basir ◽  
Uznir Ujang ◽  
Zulkepli Majid

Building Information Modeling (BIM) is a technology that focusing on the building element properties to the construction components which cover the interior and exterior building, while Geographic Information System (GIS) describe to the technology that can provide the large-scale information which cover inside and outside buildings (spaces and areas). In construction project application, BIM technology already been used as a worldwide tool while GIS rarely been applied. Each technology contains their own advantages that can be utilized in the construction project application. To bring the best effective approach in construction project, the integration between BIM and GIS technology can be considered. This paper presented an attempt in integrating BIM and GIS by using FME as a data integration platform to solve the limitation of BIM in construction project by using advantages of GIS. Through this research, an investigation of the data exchange during integration process between BIM and GIS will be look up. By using this approach, it is possible to store the BIM and GIS data in one environment. The end results for this paper will cover the method of the data exchange between BIM to GIS and GIS to BIM. Besides that, this paper highlight how GIS can solve the limitation in BIM in construction project.


2021 ◽  
Vol 263 ◽  
pp. 05029
Author(s):  
Maxim Zheleznov ◽  
Liubov Adamtsevich ◽  
Pavel Vorobev ◽  
Zoya Filimonova

In this paper, the authors consider the current state and level of implementation of building information modeling applied to transport infrastructure at the stages of their life cycle in Russia and abroad. Possible prerequisites for the transfer of knowledge and technologies of building information modeling from the civil and industrial facilities to the field of transport construction are highlighted according to the accumulated experience in the design, construction and operation of such facilities in various countries and Russia. Special emphasis is placed on examples of the world’s largest implemented or ongoing projects for the construction of transport infrastructure. The experience of implementing these projects was analyzed from the point of view of the software used in relation to all stages of the life cycle of transport infrastructure objects: design, construction and subsequent operation. The prospects for the development of data exchange formats in the context of the existing problem of mutual integration of BIM and GIS for transport infrastructure objects to ensure their complementarity and compatibility are also considered. The functional levels of the use of various software within the framework of companies implementing project activities using information modeling technologies are highlighted. A list of criteria characterizing the level of information modeling technologies integration to transport infrastructure objects into the activities of participants in the life cycle of these objects is highlighted. A review of the regulatory framework of information modeling in construction in Russia is carried out, and the main differences in this area with the regulatory regulation of this area in the European Union are noted. Conclusions are made about the key reference points for the development of information modeling of transport infrastructure facilities on a national scale, leading customer companies and contractors.


2017 ◽  
Vol 15 (3) ◽  
pp. 187-202 ◽  
Author(s):  
Kereshmeh Afsari ◽  
Charles Eastman ◽  
Dennis Shelden

Collaboration within Building Information Modeling process is mainly based on the manual transfer of document files in either vendor-specific formats or neutral format using Industry Foundation Classes. However, since the web enables Cloud-based Building Information Modeling services, it provides an opportunity to exchange data with web technologies. Alternative data sharing solutions include the federation of Building Information Modeling models and an interchange hub for data exchange in real time. These solutions face several challenges, are vendor locked, and integrate Building Information Modeling applications to a third new system. The main objective of this article is to investigate current limitations as well as opportunities of Cloud interoperability to outline a framework for a loosely coupled network-based Building Information Modeling data interoperability. This study explains that Cloud-Building Information Modeling data exchange needs to deploy major components of Cloud interoperability such as Cloud application programming interfaces, data transfer protocols, data formats, and standardization to redefine Building Information Modeling data flow in Cloud-based applications and to reshape collaboration process.


Buildings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 149 ◽  
Author(s):  
Nawari Nawari ◽  
Shriraam Ravindran

Blockchain Technology (BCT) is a growing digital technology that in recent years has gained widespread traction in various industries in the public and private sectors. BCT is a decentralized ledger that records every transaction made in the network, known as a ‘block’, the body of which is comprised of encrypted data of the entire transaction history. BCT was introduced as the working mechanism that forms the operational basis of Bitcoin, the first digital cryptocurrency to gain mainstream appeal. The introduction of decentralized data exchange technology in any industry would require strengthened security, enforce accountability, and could potentially accelerate a shift in workflow dynamics from current centralized architectures to a decentralized, cooperative chain of command and affect a cultural and societal change by encouraging trust and transparency. BCT aims at creating a system that would offer a robust self-regulating, self-monitoring, and cyber-resilient data transaction operation, assuring the facilitation and protection of a truly efficient data exchange system. In the state of Florida, climate change and unpredicted weather disasters have put pressure on state and local decision-makers to adapt quick and efficient post-disaster recovery systems. Part of the recovery efforts is the reconstruction of buildings and infrastructure. The introduction of new technologies in the Architecture, Engineering, and Construction (AEC) industry can contribute to addressing recovery and rebuilding after the event of a natural disaster. With parallel technological advancement in geospatial data and Geographic Information System (GIS), as well as worsening climatic conditions, concerns can be suitably addressed by employing an integrated system of both Building Information Modeling (BIM) and BCT. While several potential applications of BIM must provide solutions to disaster-related issues, few have seen practical applications in recent years that indicate the potential benefits of such implementations. The feasibility of BIM-based applications still rests on the reliability of connectivity and cyber-security, indicating a strong use case for using BCT in conjunction with BIM for post-disaster recovery. This research depicts a survey of BCT and its applications in the Architecture, Engineering, and Construction (AEC) industries and examines the potential incorporation within the BIM process to address post-disaster rebuilding problems. Moreover, the study investigates the potential application of BCT in improving the framework for automating the building permitting process using Smart Contract (SC) technologies and Hyperledger Fabric (HLF), as well as discussing future research areas. The study proposes a new conceptualized framework resulting from the integration of BCT and BIM processes to improve the efficiency of building permit processes in post-disaster events.


Author(s):  
Konstantina Siountri ◽  
Emmanouil Skondras ◽  
Dimitrios D. Vergados

Building information modeling (BIM) is a revolutionary technology that provides all the necessary mechanisms to achieve end-to-end communication, data exchange and information sharing between project actors, leading to smarter outcomes for communities and more efficient projects for AEC service providers. 3D models generated in the context of engaging in the BIM process and as-delivered physical assets through building management systems (BMS) adopt Internet of Things (IoT) architectures and services. However, the orchestration of IoT devices in a highly modular environment with many moving parts and inter-dependencies between the stakeholders of this environment, lead to many security issues. This article focuses on applying novel technologies in the construction industry, such as BIM, IoT, and Blockchain, but also on examining their interconnection and interoperability on a proposed system architecture on a case of a building (museum), where efficient security, management and monitoring are considered crucial factors for the unobstructed operation of the organization that hosts.


2018 ◽  
Vol 2 (2) ◽  
pp. 5
Author(s):  
Juan Antonio Ramírez-Sáenz ◽  
Juan Martín Gómez-Sánchez ◽  
Jose Luis Ponz Tienda ◽  
Juan Pablo Romero Cortés ◽  
Laura Gutierrez Bucheli

Abstract The Architecture, Engineering and Construction (AEC) Industry in Colombia is starting to implement Building Information Modeling (BIM) in their projects but in a much unorganized way. This issue could be attributed to a lack of unique and public BIM standards and guidelines for the implementation along with the inexistent support to the industry from the Government on the road to implementation. The BIM Execution Plan (BEP) is a procedural process that outlines the project’s overall vision with implementation details for the project team to follow throughout the project. In this study, the authors reviewed 20 BEPs searching for the presence of some identified and analyzed subcomponents to determine which documents were more robust. By performing a 27-question survey to understand how different BIM tools affect a BIM implementation, we investigated about the experience of some companies in the industry with five in depth interviews conducted to AEC Colombian professionals. Finally, a presentation of a BEP template that uses the analyzed documents and the identified problems in the interviews, along with an explanation of how was the use of information obtained to develop the new BEP template. Conclusions and recommendations are provided to enhance the BIM implementation in Colombia along with the template and the support files that can also help to develop and integrate future BIM process tools methodologies. Resumen La industria de Arquitectura, Ingeniería y Construcción (AEC) en Colombia está empezando a implementar Building Information Modeling (BIM) en sus proyectos, pero de una manera muy desorganizada. Este problema podría atribuirse a la falta de normas y pautas de carácter unificado y público para la implementación de BIM junto con el apoyo inexistente a la industria por parte del gobierno en el camino hacia dicha implementación. El Plan de ejecución BIM (BEP) es un procedimiento enmarcado en procesos BIM que describe la visión general del proyecto con detalles de implementación para que el equipo siga a lo largo del ciclo de vida del proyecto. En este estudio, los autores revisaron 20 BEPs en busca de la presencia de algunos subcomponentes identificados y analizados para determinar qué documentos eran más robustos. Al realizar una encuesta de 27 preguntas para comprender cómo diferentes herramientas BIM afectan su implementación, investigamos sobre la experiencia de algunas empresas en la industria con cinco entrevistas a profundidad realizadas a profesionales colombianos de AEC. Finalmente, hay una presentación de una plantilla de BEP que se basa en los análisis de los resultados y los problemas identificados en las entrevistas, junto con una explicación de cómo se utilizó la información obtenida para desarrollar la nueva plantilla de BEP. Se presentan conclusiones y recomendaciones para mejorar la implementación de BIM en Colombia, además de una plantilla y los archivos de soporte para que cada empresa que desee desarrollar su propio BEP pueda revisar la información presentada en este documento.


2021 ◽  
Vol 263 ◽  
pp. 04062
Author(s):  
Olga Baranova

Building Information Modeling (BIM) technology is one of the most actively developing approaches to the digital representation of the design of buildings and structures, which makes it possible to ensure the relationship of both geometric and functional characteristics of a designed object. The organization of information exchange within the framework of the development of IM during various stages of the life cycle is a rather difficult task, since the historical development of software products used for the design of IM elements has led to the use of various data presentation formats for solving specialized design and calculation problems. In the documents analyzed in the work, two formats with an open specification — IFC and XML — are mentioned as a means of information exchange in the development of IM. In addition to the undoubted advantages of using the IFC using the EXPRESS data specification language as a means of ensuring the interoperability of information systems, there are currently difficulties with the practical application of this format in information modeling, including for organizing joint work. XML-schema can be used as an alternative to the representation of IM in the IFC for organizing data exchange between various information systems, including when implementing joint work on IM through web applications. The use of alternative to EXPRESS schemes for the definition of IM data makes it possible to simplify the organization of information transfer between participants in the information exchange, as well as to unify the presentation of design information.


Sign in / Sign up

Export Citation Format

Share Document