scholarly journals A Fuzzy-AHP Methodology for Planning the Risk Management of Natural Hazards in Surface Mining Projects

2021 ◽  
Vol 13 (4) ◽  
pp. 2369
Author(s):  
Philip-Mark Spanidis ◽  
Christos Roumpos ◽  
Francis Pavloudakis

Surface mining projects are vulnerable to natural hazards (earthquakes, floods, soil instabilities, and epidemic crises) which constitute the primary source of risks which affect the mining operations. In the framework of sustainable planning and development of such projects, the investigation of risk impacts is essential for taking the appropriate preventive measures before disastrous events appear in a mine. This paper proposes a methodology for the risk assessment of natural hazards in surface mining projects using the triangular Fuzzy Analytical Hierarchy Process (FAHP) for the determination of the probability of risk occurrence, combined with the Expected Value (EV) function, the Monte Carlo simulation, and the Program Evaluation Review Technique PERT method for making predictions of cost and time overruns. A case study of a hazardous event with impacts in the operations of a surface mine demonstrates the methodology as a flexible and low-cost tool for mining executives. This tool is useful in the planning stage of pre-disaster management projects in the mineral industry, considering mine sustainability views. The research work also investigates critical technical and economic aspects.

2020 ◽  
Vol 12 (15) ◽  
pp. 2459
Author(s):  
Anna Giacomini ◽  
Klaus Thoeni ◽  
Marina Santise ◽  
Fabrizio Diotri ◽  
Shaun Booth ◽  
...  

In surface mining, rockfall can seriously threaten the safety of personnel located at the base of highwalls and cause serious damage to equipment and machinery. Close-range photogrammetry for the continuous monitoring of rock surfaces represents a valid tool to efficiently assess the potential rockfall hazard and estimate the risk in the affected areas. This work presents an autonomous terrestrial stereo-pair photogrammetric monitoring system developed to observe volumes falling from sub-vertical rock faces located in surface mining environments. The system has the versatility for rapid installation and quick relocation in areas often constrained by accessibility and safety issues and it has the robustness to tolerate the rough environmental conditions typical of mining operations. It allows the collection of synchronised images at different periods with high-sensitivity digital single-lens reflex cameras, producing accurate digital surface models (DSM) of the rock face. Comparisons between successive DSMs can detect detachments and surface movements during defined observation periods. Detailed analysis of the changes in the rock surface, volumes and frequency of the rocks dislodging from the sub-vertical rock surfaces can provide accurate information on event magnitude and return period at very reasonable cost and, therefore, can generate the necessary data for a detailed inventory of the rockfall spatial-temporal occurrence and magnitude. The system was first validated in a trial site, and then applied on a mine site located in NSW (Australia). Results were analysed in terms of multi-temporal data acquired over a period of seven weeks. The excellent detail of the data allowed trends in rockfall event to be correlated to lithology and rainfall events, demonstrating the capability of the system to generate useful data that would otherwise require extended periods of direct observation.


Resources ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 112
Author(s):  
Zbigniew Kasztelewicz ◽  
Mateusz Sikora ◽  
Maciej Zajączkowski

The aim of the article is to present a solution to the research problem that addresses the selection of the opening cut location in the surface mining method. Selecting the opening cut location is a strategic mine planning matter and has a key impact on the overall processes occurring during mining operations. This choice is a complex, and at the same time, mathematically ill-defined issue. The selection procedure should take into account many, often opposing, perspectives of the interveners, who represent the criteria laid down by the technical and organisational, economic, as well as social and environmental groups. In order to be able to compare criteria of a different nature, the authors implemented a multi-criteria method as a solution, derived from operational research. The mathematical tool best suited to the characteristics of the issue of selecting the opening cut location is a method from the ELECTRE family, which was used to create the final solution ranking. The main achievement of the method presented is the specification of a complementary group of assessment criteria and the application of a method allowing a solution to be created, which results in the selection of the most favourable decision variant. The developed method supports decision-makers responsible for making investment decisions in the implementation of mining projects.


Author(s):  
S.M. Rupprecht

SYNOPSIS The mining of old tailings storage facilities (TSFs) or dams/dumps has become a common operation in South Africa. This practice has several interesting aspects that are different to normal surface mining operations. When considering the estimation of Mineral Reserves, the Competent Person must take into account the conditions of mining historical TSFs that are often situated in close proximity to communities. This paper discusses the Modifying Factors required to convert a Mineral Resource to a Mineral Reserve, such as mining sequence, dilution, mining losses, and environmental, social/community, and government factors. The paper also investigates the role that Inferred Mineral Resources may play in the life-of-mine plans for tailings dam projects. Keywords: TSF, tailings, hydraulic mining, Mineral Reserve estimation.


2020 ◽  
pp. 133-139
Author(s):  
Sanatan Ratna ◽  
B Kumar

In the past few decades, there has been lot of focus on the issue of sustainability. This has occurred due to the growing concerns related to climate change and the growing awareness about environmental concerns. Also, the competition at global level has led to the search for the most sustainable route in the industries. The current research work deals with the selection of green supplier in a Nickle coating industry based on certain weighted green attributes. For this purpose, a hybrid tool comprising of Fuzzy AHP (Fuzzy Analytical Hierarchy) and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) is used. The Fuzzy AHP is used for assigning proper weights to the selected criteria for supplier evaluation, while VIKOR is used for final supplier selection based on the weighted criteria. The three criterions for green supplier selection are, Ecological packaging, Corporate socio-environmental responsibility and Staff Training. The outcome of the integrated model may serve as a steppingstone to other SMEs in different sectors for selecting the most suitable supplier for addressing the sustainability issue.


Author(s):  
A.F. Klebanov ◽  
M.V. Kadochnikov ◽  
V.V. Ulitin ◽  
D.N. Sizemov

The article addresses the issues of ensuring safe operation of mining equipment in surface mining. It describes the main factors and situations that pose a high risk to human life and health. The most dangerous incidents are shown to be related to limited visibility and blind spots for operators of mining equipment, which can result in collisions and personnel run over. The main technologies and specific solutions used to design collision avoidance systems are described and their general comparison is provided. A particular focus is placed on monitoring the health of employees at their workplace by means of portable personal devices that promptly inform the dispatcher of emergency situations. General technical requirements are formulated for designing of the system to prevent equipment collisions and personnel run over in surface mining operations. The paper emphasizes the importance of introducing a multifunctional safety system in surface mines in order to minimise the possibility of incidents and accidents throughout the entire production cycle.


2018 ◽  
Vol 138 (2/2018) ◽  
pp. 84-89
Author(s):  
K.Yu. Anistratov ◽  
T.V. Donchenko ◽  
P.I. Opanasenko ◽  
I.B. Strogiy

2021 ◽  
Vol 303 ◽  
pp. 01029
Author(s):  
Alexander Katsubin ◽  
Victor Martyanov ◽  
Milan Grohol

Information about the geological structure of Kuznetsky coal basin (Kuzbass) allows us to note that coal deposits developed by open-cast method are characterized by complicated conditions and have the following features: large length of deposits at significant depths of occurrence; coal series bedding of different thicknesses (from 1 to 40 m); different dip angles (from 3 to 90º); a significant number of dip and direction disturbances; different thickness of unconsolidated quaternary sediments (from 5 to 40 m); a wide range of strength values of rocks. In addition, there is a thickness irregularity and frequent variability of elements of occurrence of coal seams within the boundaries of a quarry field both in length and depth of mining. From the point of view of open-pit mining, such deposits are complex-structured. The factors listed above have a decisive influence on the choice of technical means, the order of development and the possibility of carrying out surface mining operations. Therefore, there is a need for a systematization of mining and geological conditions for the development of coal deposits, the purpose of which is to ensure a process of evaluation of complex-structured coal deposits for the development of coal-bearing zones by various complexes of equipment.


Sign in / Sign up

Export Citation Format

Share Document