Effect of Polymer Admixtures on Mechanical Properties of Alkali-Activated Slag Mortars

2015 ◽  
Vol 1124 ◽  
pp. 145-150 ◽  
Author(s):  
Olesia Mikhailova ◽  
Pavel Rovnaník

Alkali-activated slag (AAS) binders have lower environmental impact due to its production process, but also have disadvantages as an increased shrinkage followed by formation of microcracks. The effect of polymer admixtures based on vinyl acetate, ethylene and acrylic acid ester, methyl metacrylate and different types of polyethylene glycol (PEG) and polypropylene glycol (PPG) on properties of alkali-activated slag concrete was studied. Admixtures used for mortars were tested to improve shrinkage, workability and compressive strength, flexural strength. The analysis also showed the effect of the admixtures on microstructure of the alkali-activated slag pastes and mortars.

2021 ◽  
Vol 13 (4) ◽  
pp. 2407
Author(s):  
Guang-Zhu Zhang ◽  
Xiao-Yong Wang ◽  
Tae-Wan Kim ◽  
Jong-Yeon Lim ◽  
Yi Han

This study shows the effect of different types of internal curing liquid on the properties of alkali-activated slag (AAS) mortar. NaOH solution and deionized water were used as the liquid internal curing agents and zeolite sand was the internal curing agent that replaced the standard sand at 15% and 30%, respectively. Experiments on the mechanical properties, hydration kinetics, autogenous shrinkage (AS), internal temperature, internal relative humidity, surface electrical resistivity, ultrasonic pulse velocity (UPV), and setting time were performed. The conclusions are as follows: (1) the setting times of AAS mortars with internal curing by water were longer than those of internal curing by NaOH solution. (2) NaOH solution more effectively reduces the AS of AAS mortars than water when used as an internal curing liquid. (3) The cumulative heat of the AAS mortar when using water for internal curing is substantially reduced compared to the control group. (4) For the AAS mortars with NaOH solution as an internal curing liquid, compared with the control specimen, the compressive strength results are increased. However, a decrease in compressive strength values occurs when water is used as an internal curing liquid in the AAS mortar. (5) The UPV decreases as the content of zeolite sand that replaces the standard sand increases. (6) When internal curing is carried out with water as the internal curing liquid, the surface resistivity values of the AAS mortar are higher than when the alkali solution is used as the internal curing liquid. To sum up, both NaOH and deionized water are effective as internal curing liquids, but the NaOH solution shows a better performance in terms of reducing shrinkage and improving mechanical properties than deionized water.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Chen ◽  
Jun Wang ◽  
Jinyou Zhao

Extensive research into alkali-activated slag as a green gel material to substitute for cement has been done because of the advantages of low-carbon dioxide emissions and recycling of industrial solid waste. Alkali-activated slag usually has good mechanical properties, but the too fast setting time restricted its application and promotion. Changing the composition of alkaline activator could optimize setting time, usually making it by adding sodium carbonate or sodium sulfate but this would cause insufficient hydration reaction power and hinder compressive strength growth. In this paper, the effect of sodium aluminate dosage as an alkaline activator on the setting time, fluidity, compressive strength, hydration products, and microstructures was studied through experiments. It is fair to say that an appropriate amount of sodium aluminate could obtain a suitable setting time and better compressive strength. Sodium aluminate provided enough hydroxyl ions for the paste to promote the hydration reaction process that ensured obtaining high compressive strength and soluble aluminium formed precipitate wrapped on the surface of slag to inhibit the hydration reaction process in the early phase that prolonged setting time. The hydration mechanism research found that sodium aluminate played a key role in the formation of higher cross-linked gel hydration products in the late phase of the process. Preparing an alkali-activated slag with excellent mechanical properties and suitable setting time will significantly contribute to its application and promotion.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 593
Author(s):  
Haining Geng ◽  
Qing Xu ◽  
Saiful B. Duraman ◽  
Qiu Li

Pervious concrete is made of cementitious materials, coarse aggregate, water and additives, with characteristic macro- and meso-connected pore structure, which enables the acceptable mechanical properties and high water permeability for pavement and road applications. In this study, the effect of rheology of fresh alkali-activated slag paste on the sedimentation of paste on the bottom of pervious concrete, meso-structure, connected porosity, mechanical properties and water permeability was investigated by a range of analytical techniques through varying the equivalent alkali content to control the rheology of fresh paste in the pervious concrete. The compressive strength of pervious concrete was related to the percentage area of paste and the average thickness of paste on the surface of coarse aggregate. The tensile strength and water permeability were correlated to the connected porosity of pervious concrete and the rheology of fresh paste. A relative lower fluidity, higher viscosity and shear stress of fresh alkali-activated slag paste favoured lower sedimentation of paste on the bottom of pervious concrete, higher connected porosity, tensile strength and water permeability. There was no correlation between compressive strength and tensile strength of pervious concrete.


2014 ◽  
Vol 1000 ◽  
pp. 118-121 ◽  
Author(s):  
Pavel Rovnaník ◽  
Patrik Bayer

Alkali-activated slag (AAS) is a material which has great potential for use in building industry. The aim of this work was to gain new superior properties by the addition of carbon nanotubes (CNTs). This material can act as a microreinforcement improving mechanical properties of cementitious materials. The effect of 0–1 wt.% addition of CNTs on the mechanical properties, hydration characteristics and microstructure of AAS binder was determined. The addition of CNTs delays the setting of the binder and a partial deterioration of strength parameters was observed.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Sign in / Sign up

Export Citation Format

Share Document