scholarly journals Environmental Design Guidelines for Circular Building Components: The Case of the Circular Building Structure

2021 ◽  
Vol 13 (10) ◽  
pp. 5621
Author(s):  
Leonora Charlotte Malabi Eberhardt ◽  
Anne van Stijn ◽  
Liv Kristensen Stranddorf ◽  
Morten Birkved ◽  
Harpa Birgisdottir

Transitioning to a circular built environment can reduce the environmental impacts, resource consumption and waste generation emanating from buildings. However, there are many options to design circular building components, and limited knowledge on which options lead to the best environmental performance. Few guidelines exist and they build on conventional environmental performance assessments that focus on single life cycles, whereas the circular economy (CE) focuses on a sequence of multiple use- and life cycles. In this article, environmental design guidelines for circular building components were developed in five steps. First, examples of circular variants of a building structure were synthesized. Second, the environmental performance of these variants was compared with a business-as-usual variant through Life Cycle Assessments (LCA) and Material Flow Analysis (MFA) respectively. Circular parameters of these variants were tested using a scenario-specific approach. Third, from 24 LCAs and MFAs, a scorecard, rules-of-thumb and nine environmental design guidelines for designing circular building components were developed that provide guidance on which circular pathways and variants lead to the best environmental performance. For components with a long functional–technical lifespan, the following are promoted: resource efficiency, longer use through adaptable design, low-impact biomaterials and facilitating multiple cycles after and of use. Fourth, the design guidelines were evaluated by 49 experts from academia, industry and government in seven expert sessions. Further research is needed to validate the generalizability of the design guidelines. However, this research makes an important step in supporting the development of circular building components and, subsequently, the transition to a circular built environment.

2020 ◽  
Vol 12 (22) ◽  
pp. 9579
Author(s):  
Leonora Charlotte Malabi Eberhardt ◽  
Anne van Stijn ◽  
Freja Nygaard Rasmussen ◽  
Morten Birkved ◽  
Harpa Birgisdottir

Transitioning the built environment to a circular economy (CE) is vital to achieve sustainability goals but requires metrics. Life cycle assessment (LCA) can analyse the environmental performance of CE. However, conventional LCA methods assess individual products and single life cycles whereas circular assessment requires a systems perspective as buildings, components and materials potentially have multiple use and life cycles. How should benefits and burdens be allocated between life cycles? This study compares four different LCA allocation approaches: (a) the EN 15804/15978 cut-off approach, (b) the Circular Footprint Formula (CFF), (c) the 50:50 approach, and (d) the linearly degressive (LD) approach. The environmental impacts of four ‘circular building components’ is calculated: (1) a concrete column and (2) a timber column both designed for direct reuse, (3) a recyclable roof felt and (4) a window with a reusable frame. Notable differences in impact distributions between the allocation approaches were found, thus incentivising different CE principles. The LD approach was found to be promising for open and closed-loop systems within a closed loop supply chain (such as the ones assessed here). A CE LD approach was developed to enhance the LD approach’s applicability, to closer align it with the CE concept, and to create an incentive for CE in the industry.


2021 ◽  
Vol 2 ◽  
Author(s):  
Daniel Danevad ◽  
Sandra Carlos-Pinedo

Greenhouse fruit and vegetable production uses large amounts of energy and other resources, and finding ways of reducing its impact may increase sustainability. Outputs generated from solid-state anaerobic digestion (SS-AD) are suitable for use in greenhouses, which creates a need to investigate the consequences of the possible interactions between them. Connecting the fruit and vegetable production with the resource flows from an SS-AD process, e.g., biogas and digestate, could increase circularity while decreasing the total environmental impact. There are currently no studies where a comprehensive assessment of the material flows between greenhouses and SS-AD are analyzed in combination with evaluation of the environmental impact. In this study, material flow analysis is used to evaluate the effects of adding tomato related waste to the SS-AD, while also using life cycle assessment to study the environmental impact of the system, including production of tomatoes in a greenhouse and the interactions with the SS-AD. The results show that the environmental impact decreases for all evaluated impact categories as compared to a reference greenhouse that used inputs and outputs usually applied in a Swedish context. Using the tomato related waste as a feedstock for SS-AD caused a decrease of biomethane and an increase of carbon dioxide and digestate per ton of treated waste, compared to the digestion of mainly food waste. In conclusion, interactions between a greenhouse and an SS-AD plant can lead to better environmental performance by replacing some of the fertilizer and energy required by the greenhouse.


2021 ◽  
Author(s):  
Claudio Castiglione ◽  
Erica Pastore ◽  
Arianna Alfieri

In production planning and control, assessing the performance of a manufacturing system is a multi-dimensional problem, in which neglected dimensions may lead to hidden inefficiencies and missed opportunities for gaining a competitive advantage. This paper proposes a data formalisation method to model a manufacturing system by simultaneously considering value creation and technical, economic, and environmental performance. The proposed method combines the techno-economic assessment of lean manufacturing and sustainable manufacturing with the data-driven approach, typical of Industry 4.0, to overcome the limitations of the lean approaches in addressing complex systems. The method is based on integrating Multi-layer Stream Mapping and a combination of Enterprise Input-Output and Material Flow Analysis. It also considers non-value-added activities such as transport and inventories. Pen and papers and digital approaches can simultaneously exploit the method as a shared architecture for formal data integration. The implementation of the method is shown through a numerical example based on a recycled plastic pipeline manufacturing system.


Author(s):  
Vincent Moreau ◽  
Guillaume Massard

The concept of metabolism takes root in biology and ecology as a systematic way to account for material flows in organisms and ecosystems. Early applications of the concept attempted to quantify the amount of water and food the human body processes to live and sustain itself. Similarly, ecologists have long studied the metabolism of critical substances and nutrients in ecological succession towards climax. With industrialization, the material and energy requirements of modern economic activities have grown exponentially, together with emissions to the air, water and soil. From an analogy with ecosystems, the concept of metabolism grew into an analytical methodology for economic systems. Research in the field of material flow analysis has developed approaches to modeling economic systems by assessing the stocks and flows of substances and materials for systems defined in space and time. Material flow analysis encompasses different methods: industrial and urban metabolism, input–output analysis, economy-wide material flow accounting, socioeconomic metabolism, and more recently material flow cost accounting. Each method has specific scales, reference substances such as metals, and indicators such as concentration. A material flow analysis study usually consists of a total of four consecutive steps: (a) system definition, (b) data acquisition, (c) calculation, and (d) interpretation. The law of conservation of mass underlies every application, which implies that all material flows, as well as stocks, must be accounted for. In the early 21st century, material depletion, accumulation, and recycling are well-established cases of material flow analysis. Diagnostics and forecasts, as well as historical or backcast analyses, are ideally performed in a material flow analysis, to identify shifts in material consumption for product life cycles or physical accounting and to evaluate the material and energy performance of specific systems. In practice, material flow analysis supports policy and decision making in urban planning, energy planning, economic and environmental performance, development of industrial symbiosis and eco industrial parks, closing material loops and circular economy, pollution remediation/control and material and energy supply security. Although material flow analysis assesses the amount and fate of materials and energy rather than their environmental or human health impacts, a tacit assumption states that reduced material throughputs limit such impacts.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 194 ◽  
Author(s):  
Bob Geldermans ◽  
Martin Tenpierik ◽  
Peter Luscuere

This article sheds light on the materialization and operation of residential partitioning wall components in relation to circular and flexible performance. The hypothesis is twofold: (1) A stronger integration of materialization and operation aspects is indispensable in establishing sustainable value-models, and (2) recent innovations, concerning the reversibility of material connections, will help disrupting the status-quo in that respect. Attention is drawn to renewable natural fibre composites (NFC), reversible adhesives, and biodegradable insulation materials. After a background sketch regarding the notion of time, change, and material circularity in design and planning, the housing challenge in the Amsterdam metropolitan area (AMA, the Netherlands) is described. Next, a design conceptualization stage is introduced, informed by two methods and tools in particular: Circ-Flex assessment, and activity-based spatial material flow analysis. Results of the conceptualization stage are presented regarding materialization and operation, culminating in Circ-Flex partitioning components, more specifically: Side panels and insulation. It was found that NFC can tackle current issues relating, most prominently, to circularity performance. Associated modifications in the value-chain occur, above all, in raw material sourcing, manufacturing, reutilization logistics, and data-sharing. The outcomes are valid for multiple building components other than indoor partitioning, such as kitchens and furniture, but also insulation—and interior side-sheeting—of walls and roofs in energy-renovations.


2021 ◽  
Vol 13 (14) ◽  
pp. 7939
Author(s):  
Sohani Vihanga Withanage ◽  
Komal Habib

The unprecedented technological development and economic growth over the past two decades has resulted in streams of rapidly growing electronic waste (e-waste) around the world. As the potential source of secondary raw materials including precious and critical materials, e-waste has recently gained significant attention across the board, ranging from governments and industry, to academia and civil society organizations. This paper aims to provide a comprehensive review of the last decade of e-waste literature followed by an in-depth analysis of the application of material flow analysis (MFA) and life cycle assessment (LCA), i.e., two less commonly used strategic tools to guide the relevant stakeholders in efficient management of e-waste. Through a keyword search on two main online search databases, Scopus and Web of Science, 1835 peer-reviewed publications were selected and subjected to a bibliographic network analysis to identify and visualize major research themes across the selected literature. The selected 1835 studies were classified into ten different categories based on research area, such as environmental and human health impacts, recycling and recovery technologies, associated social aspects, etc. With this selected literature in mind, the review process revealed the two least explored research areas over the past decade: MFA and LCA with 33 and 31 studies, respectively. A further in-depth analysis was conducted for these two areas regarding their application to various systems with numerous scopes and different stages of e-waste life cycle. The study provides a detailed discussion regarding their applicability, and highlights challenges and opportunities for further research.


2021 ◽  
Vol 1 ◽  
pp. 1333-1342
Author(s):  
Núria Boix Rodríguez ◽  
Marco Marconi ◽  
Claudio Favi ◽  
Giovanni Formentini

AbstractFace masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment.


Author(s):  
Jingjing Wang ◽  
Xueying Wu ◽  
Ruoyu Wang ◽  
Dongsheng He ◽  
Dongying Li ◽  
...  

The coronavirus disease 2019 pandemic has stimulated intensive research interest in its transmission pathways and infection factors, e.g., socioeconomic and demographic characteristics, climatology, baseline health conditions or pre-existing diseases, and government policies. Meanwhile, some empirical studies suggested that built environment attributes may be associated with the transmission mechanism and infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, no review has been conducted to explore the effect of built environment characteristics on the infection risk. This research gap prevents government officials and urban planners from creating effective urban design guidelines to contain SARS-CoV-2 infections and face future pandemic challenges. This review summarizes evidence from 25 empirical studies and provides an overview of the effect of built environment on SARS-CoV-2 infection risk. Virus infection risk was positively associated with the density of commercial facilities, roads, and schools and with public transit accessibility, whereas it was negatively associated with the availability of green spaces. This review recommends several directions for future studies, namely using longitudinal research design and individual-level data, considering multilevel factors and extending to diversified geographic areas.


2021 ◽  
Vol 173 ◽  
pp. 105732
Author(s):  
Xue Rui ◽  
Yong Geng ◽  
Xin Sun ◽  
Han Hao ◽  
Shijiang Xiao

Sign in / Sign up

Export Citation Format

Share Document