scholarly journals Multidisciplinary Performance Assessment of an Eco-Sustainable RC-Framed Skin for the Integrated Upgrading of Existing Buildings

2021 ◽  
Vol 13 (16) ◽  
pp. 9225
Author(s):  
Luca Pozza ◽  
Anna Degli Esposti ◽  
Alessandra Bonoli ◽  
Diego Talledo ◽  
Luca Barbaresi ◽  
...  

Recent earthquakes have highlighted a general inadequacy of the existing building stock in Italy and the need to address this critical issue by increasing its structural resilience. At the same time, the problem of energy consumption in existing residential and commercial buildings is increasingly significant and incompatible with the environmental targets set by governments. Considering all the aforementioned aspects, the seismic upgrading of existing buildings, based on the use of an eco-friendly and sustainable technology, has become more and more relevant and different intervention approaches have been developed. This paper aims to provide a multidisciplinary approach for the performance assessment of an eco-friendly and sustainable RC-framed skin for integrated refurbishment of existing buildings. A preliminary description of such skin technology is provided with particular attention to the simultaneous improvement of structural (e.g., seismic) and non-structural (e.g., energy, acoustic) performances and to issues concerning the limitation of invasiveness and interruption of use of the building. Technological details and in situ installation phases are described with special regard to connection and interaction with the existing building. Procedures for the assessment of upgraded building performances, in terms of seismic capacity and thermo-hygrometric and acoustic performances, are defined and applied to a selected basic cell structure. The feasibility and sustainability of the proposed upgrading intervention is finally investigated by means of a holistic Life Cycle Assessment for environmental impact and Life Cycle Cost for an economic evaluation. Finally, results from a multidisciplinary performance assessment are critically discussed by relating the performance aspects to the technological and installation issues.

2019 ◽  
Vol 11 (5) ◽  
pp. 1452 ◽  
Author(s):  
Fabio Fantozzi ◽  
Caterina Gargari ◽  
Massimo Rovai ◽  
Giacomo Salvadori

The debate on the relevance of the global sustainability (including energy, environmental, social, economic, and political aspects) of building stock is becoming increasingly important in Europe. In this context, special attention is placed on the refurbishment of existing buildings, in particular those characterized by significant volumes and poor energy performance. Directive 2012/27/EU introduced stringent constraints (often disregarded) for public administrations to ensure a minimum yearly renovation quota of its building stock. This study describes how Life Cycle Cost analysis (LCC) can be used as a tool to identify the “cost-optimal level” among different design solutions to improve the energy performance of existing buildings. With this aim, a social housing building located in the town of Pisa (Italy) was chosen as the case study, for which two alternative renovation designs were compared using the LCC methodology to identify the optimal solution. The two alternatives were characterized by the same energy performance—one was based on the demolition of the existing building and the construction of a new building (with a wooden frame structure, as proposed by the public company owner of the building), while the other was based on the renovation of the existing building. This study can provide useful information, especially for designers and public authorities, about the relevance of the economic issues related to the renovation of social housing in a Mediterranean climate.


2021 ◽  
Vol 11 (4) ◽  
pp. 1423
Author(s):  
José Manuel Salmerón Lissen ◽  
Cristina Isabel Jareño Escudero ◽  
Francisco José Sánchez de la Flor ◽  
Miriam Navarro Escudero ◽  
Theoni Karlessi ◽  
...  

The 2030 climate and energy framework includes EU-wide targets and policy objectives for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels); (2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency. In this context, the methodology of the cost-optimal level from the life-cycle cost approach has been applied to calculate the cost of renovating the existing building stock in Europe. The aim of this research is to analyze a pilot building using the cost-optimal methodology to determine the renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the building. The case under study is an apartment building located in a mild Mediterranean climate (Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the choice of the elements and systems for renovating building envelopes and how energy and economic aspects influence this choice. Simulations have shown that these packages of optimal solutions (different configurations for the building envelope, thermal bridges, airtightness and ventilation, and domestic hot water production systems) can provide savings in the primary energy consumption of up to 60%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


2019 ◽  
Vol 37 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Zoraya Roldán Rockow ◽  
Brandon Ross ◽  
Anna K. Black

Purpose The purpose of this paper is to present a review of existing models and tools for evaluating the adaptability of buildings. A baseline of the current state of the art in adaptability evaluation and adaptation decision support is established; from this baseline, gaps for future research are recommended. Design/methodology/approach A literature review was conducted to identify papers describing adaptability models and tools. The identified models were characterized based on their focus (new buildings, existing buildings, building life cycle), considered variables (physical and/or context features) and degree/type of validation. Findings Models can be grouped as those focusing on: evaluating adaptation decisions for existing buildings; the design of new buildings for future adaptation; and understanding adaptation throughout a building life cycle. Models focusing on existing building evaluation are further in development and validation than the other model types; as such, they are more suitable for use by practitioners. Another finding is that modeling of adaptability in buildings is still in its nascent stage and that data-driven quantitative modeling is a prime area for future research. Originality/value This paper is the first comprehensive review of models and tools for evaluating adaptability. Other works have evaluated the topic of adaptability more broadly, but this is the first paper to systematically characterize existing models and tools. Based on the review future, research topics are recommended.


2016 ◽  
Vol 43 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Moatassem Abdallah ◽  
Khaled El-Rayes ◽  
Liang Liu

Buildings have significant impacts on the environment and economy as they were reported by the World Business Council for Sustainable Development in 2009 to account for 40% of the global energy consumption. Building owners are increasingly seeking to integrate sustainability and green measures in their buildings to minimize energy and water consumption as well as life-cycle cost. Due to the large number of feasiblecombinations of sustainability measures, decision makers are often faced with a challenging task that requires them to identify an optimal set of upgrade measures to minimize the building life-cycle cost. This paper presents a model for optimizing the selection of building upgrade measures to minimize the life-cycle cost of existing buildings while complying with owner-specified requirements for building operational performance and budget constraints. The optimization model accounts for initial upgrade cost, operational cost and saving, escalation in utility costs, maintenance cost, replacement cost, and salvage value of building fixtures and equipment, and renewable energy systems. A case study of a rest area building in the state of Illinois in the United States was analyzed to illustrate the unique capabilities of the developed optimization model. The main findings of this analysis illustrate the capabilities of the model in identifying optimal building upgrade measures to achieve the highest savings of building life-cycle cost within a user-specified upgrade budget; and generating practical and detailed recommendations on replacing building fixtures and equipment and installing renewable energy systems.


2018 ◽  
Vol 21 (15) ◽  
pp. 2227-2240 ◽  
Author(s):  
Yu-Jing Li ◽  
Hong-Nan Li

Considering future seismic risk and life-cycle cost, the life-cycle seismic design of bridge is formulated as a preference-based multi-objective optimization and decision-making problem, in which the conflicting design criteria that minimize life-cycle cost and maximize seismic capacity are treated simultaneously. Specifically, the preference information based on theoretical analysis and engineering judgment is embedded in the optimization procedure. Based on reasonable displacement ductility, the cost preference and safety preference information are used to progressively construct value function, directing the evolutionary multi-objective optimization algorithm’s search to more preferred solutions. The seismic design of a reinforced concrete pier is presented as an application example using the proposed procedure for the global Pareto front corresponding with engineering designers’ preference. The results indicate that the proposed model is available to find the global Pareto front satisfying the corresponding preference and overcoming the difficulties of the traditional multi-objective optimization algorithm in obtaining a full approximation of the entire Pareto optimal front for large-dimensional problems as well as cognitive difficulty in selecting one preferred solution from all these solutions.


2020 ◽  
Vol 12 (22) ◽  
pp. 9462
Author(s):  
Annarita Ferrante ◽  
Anastasia Fotopoulou ◽  
Cecilia Mazzoli

The current main issue in the construction sector in Europe concerns the energy refurbishment and the reactivation of investments in existing buildings. Guidance for enhancing energy efficiency and encouraging member states to create a market for deep renovation is provided by a number of European policies. Innovative methods and strategies are required to attract and involve citizens and main stakeholders to undertake buildings’ renovation processes, which actually account for just 1% of the total building stock. This contribution proposes technical and financial solutions for the promotion of energy efficient, safe, and attractive retrofit interventions based on the creation of volumetric additions combined with renewable energy sources. This paper focuses on the urban reality of Athens as being an important example of a degraded urban center with a heavy heat island, a quite important heating demand, and a strong seismic vulnerability. The design solutions presented here demonstrate that the strategy of additions, because of the consequent increased value of the buildings, could represent an effective densification policy for the renovation of existing urban settings. Hence, the aim is to trigger regulatory and market reforms with the aim to boost the revolution towards nearly zero energy buildings for the existing building stocks.


Sign in / Sign up

Export Citation Format

Share Document