scholarly journals Effects of Different Irrigation Management Practices on Potato (Solanum tuberosum L.)

2021 ◽  
Vol 13 (18) ◽  
pp. 10187
Author(s):  
Trevor W. Crosby ◽  
Yi Wang

Decisions in irrigation management can greatly impact the overall sustainability of potato production. A field study was conducted in 2018 and 2019 to evaluate the impacts of different irrigation regimes on yield and quality of three russet potato varieties. For Russet Burbank, fry quality at harvest and at 4 and 8 months after harvest was assessed. During early growth stages, the standard practice of irrigating to maintain 60–80% soil moisture was employed. The irrigation treatments were applied during the late tuber bulking and maturation growth stages, and consisted of irrigation at 125%, 100%, 75%, and 50% of daily evapotranspiration (ET). We found that 125%ET provided no increase in total yield and marketable yield compared to other treatments in 2018, and it produced similar marketable yield to 100%ET in 2019. Total yield, but not marketable yield, of 125%ET and 100%ET was significantly higher than the number under 50%ET in 2019. In both years, increasing irrigation rate led to a decrease in irrigation efficiency and water-use efficiency. Irrigation rate had no significant effects on tuber quality at harvest and during storage. This study indicated that over-irrigation at 125%ET was not beneficial to profitable potato production in the Upper Midwest of the US, and deficit irrigation at 75%ET during late tuber bulking and tuber maturation could potentially result in more sustainable water use while not jeopardizing tuber growth. The results support the possibility of adopting late-season deficit irrigation for growing potatoes in the region, though more years of research would allow for a better understanding of the impacts of this practice.

2017 ◽  
Vol 60 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Liwang Ma ◽  
Zhiming Qi ◽  
Yanjun Shen ◽  
Liang He ◽  
Shouhua Xu ◽  
...  

Abstract. Deficit irrigation has been shown to increase crop water use efficiency (WUE) under certain conditions, even though the yield is slightly reduced. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated with measured data from a large weighing lysimeter from 1998 to 2003 at the Yucheng Experimental Station in the North China Plain for daily evapotranspiration (ET), soil water storage (0-120 cm), leaf area index (LAI), aboveground biomass, and grain yield. The calibrated model was then used to explore crop responses to ET-based irrigation management using weather data from 1958 to 2015 and identify the most suitable ET-based irrigation schedules for the area. Irrigation amount was determined by constraining irrigation to a percentage of potential crop ET (40%, 60%, 80%, and 100% ETc) at the various growth stages of wheat [planting to before winter dormancy (P-D), green up to booting (G-B), booting to flowering (B-F), and flowering to maturity (F-M)] and of maize [planting to silking (P-S) and silking to maturity (S-M)], subject to seasonal water availability limits of 100/50, 200/100, 300/150, and 400/200 mm and no water limit for wheat/maize seasons, respectively. In general, wheat was more responsive to irrigation than maize, while greater influence of weather variation was simulated on maize than on wheat. For wheat with seasonal water limits, the highest average WUE was simulated with the highest targeted ETc levels at both the G-B and B-F stages and lower targeted ETc levels at the P-D and F-M stages. However, the highest average grain yield was simulated with the highest targeted ETc levels at all four growth stages for no water limit and the 400 mm water limit, or at both the G-B and B-F stages for the 300 and 200 mm water limits. For maize, lower targeted ETc levels after silking did not significantly affect maize production due to the high season rainfall, but irrigation of 60% ETc before silking was recommended. These results could be used as guidelines for precision irrigation along with real-time weather information. Keywords: Deficit irrigation, Evapotranspiration, Growth stage, RZWQM, Water use efficiency, Wheat and maize.


2016 ◽  
Vol 10 (1s) ◽  
pp. 69 ◽  
Author(s):  
Marcella M. Giuliani ◽  
Giuseppe Gatta ◽  
Eugenio Nardella ◽  
Emanuele Tarantino

Processing tomato grown in Mediterranean region required high irrigation volume throughout growing season. A two-year study was carried out in order to investigate the effects of deficit irrigation (DI) and regulated deficit irrigation (RDI) on processing tomato cultivated under sub-arid conditions. A comparison between the irrigation management linked to common practice adopted by farmer and the irrigation management based on crop evapotranspiration (ET<sub>c</sub>) demand was also done. The tomato cv. <em>Genius</em> F1 was cultivated under five water regimes: minimal irrigation (I<sub>0</sub>), as irrigation only at transplanting and during fertilising; DI, to restore 60% ET<sub>c</sub>; RDI, to restore 60%-80%- 60% ET<sub>c</sub> across the three main tomato phenological stages; full irrigation (FI), to restore 100% ET<sub>c</sub>; and farmer irrigation (FaI), as irrigation following the subjective farmer method. Compared to FI, under the FaI regime, the seasonal irrigation volume was 31% and 26% higher in the 2009 and 2010, respectively, with not significant yield increase between the two water regimes. Among the irrigation regimes, only the RDI showed similar yield values over the two years, although 2010 was climatically less favourable. For the water use efficiency related to the marketable yield (WUE<sub>y</sub>), among the irrigation regimes, RDI showed the higher value together with FI. Finally, the K<sub>y</sub> was 0.91, which indicates moderate water stress tolerance for processing tomato cultivated in Mediterranean regions. In conclusion, the data obtained in the present study demonstrate that in Southern Italy the irrigation planning followed by the farmer does not follow the principles of sustainable irrigation. Moreover, with the adoption of the RDI strategy, it is possible to save about 27% of water maintaining high WUE<sub>y</sub> value with an increase of fruit quality. The adoption of this regime could be suggested in processing tomato cultivated under Mediterranean climate saving water in both the vegetative and ripening periods.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kassu Tadesse Kassaye ◽  
Wubengeda Admasu Yilma ◽  
Mehiret Hone Fisha ◽  
Dawit Habte Haile

The benefits of water-saving techniques such as alternate furrow and deficit irrigations need to be explored to ensure food security for the ever-increasing population within the context of declining availability of irrigation water. In this regard, field experiments were conducted for 2 consecutive dry seasons in the semiarid region of southwestern Ethiopia and investigated the influence of alternate furrow irrigation method with different irrigation levels on the yield, yield components, water use efficiency, and profitability of potato production. The experiment comprised of 3 irrigation methods: (i) conventional furrow irrigation (CFI), (ii) alternate furrow irrigation (AFI), and (iii) fixed furrow irrigation (FFI) combined factorially with 3 irrigation regimes: (i) 100%, (ii) 75%, and (iii) 50% of the potato water requirement (ETC). The experiment was laid out in randomized complete block design replicated thrice. Results revealed that seasonal irrigation water applied in alternate furrows was nearly half (170 mm) of the amount supplied in every furrow (331 mm). Despite the half reduction in the total amount of water, tuber (35.68 t ha−1) and total biomass (44.37 t ha−1) yields of potato in AFI did not significantly differ from CFI (34.84 and 45.35 t ha−1, respectively). Thus, AFI improved WUE by 49% compared to CFI. Irrigating potato using 75% of ETC produced tuber yield of 35.01 t ha−1, which was equivalent with 100% of ETC (35.18 t ha−1). Irrigating alternate furrows using 25% less ETC provided the highest net return of US$74.72 for every unit investment on labor for irrigating potato. In conclusion, irrigating alternate furrows using up to 25% less ETC saved water, provided comparable yield, and enhanced WUE and economic benefit. Therefore, farmers and experts are recommended to make change to AFI with 25% deficit irrigation in the study area and other regions with limited water for potato production to improve economic, environmental, and social performance of their irrigated systems.


2021 ◽  
Vol 9 (2) ◽  
pp. 113
Author(s):  
Kelly Nascimento Leite ◽  
Daniel Fonseca de Carvalho ◽  
Jose Maria Tarjuelo Martin- Benito ◽  
Geocleber Gomes de Sousa ◽  
Alfonso Dominguez Padilla

The present study aimed to validate the MOPECO crop simulation model and to determine a viable irrigation management for watermelon in the semiarid region of Northeast Brazil, using methodologies of optimized regulated deficit irrigation (ORDI) and constant deficit irrigation (CDI). The experiment was carried out during October to December 2013 and the second one from July to August 2014 in plots of land of producers in the Baixo Acaraú Irrigated Perimeter – Ceará, Brazil. Treatments were characterized by ORDI management (70, 80, 90% ETa/ETm ratio) and CDI management along the entire cycle (70, 80 and 90% ETm) and control treatment, irrigated with 100% of the water requirement of the crop (ETm). In terms of saving of water resources, the results showed that management with regulated deficit irrigation leads to favorable and economically viable results for the farmer, of water saving, especially in a situation of severe water scarcity, irrigation management with regulated water deficit (ORDI) can provide favorable and economically viable results for the farmer. The highest value of WUE (41.8 kg m-3) was obtained with the treatment of lowest water volume applied (352.1 L) in the second experiment, decreasing with the increase in the water volume used. The ORDI methodology represents a better water use efficiency for all treatments of deficit applied compared to CDI treatments. The difference of ORDI and CDI methodology provided an increase of up to 200% in the gross margin obtained with the exploration of the watermelon culture which represents a range of R$ 986.00 in profit in a situation of water scarcity, as in the case of the studied region, the strategy with water supply of 70% of ETa/ETm ratio regulated by phenological stage was recommended in order to obtain highest water use efficiency.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1095D-1095
Author(s):  
Daniel I. Leskovar ◽  
Giovanni Piccinni ◽  
Darrin Moore

A two-year experiment was conducted to determine yield, water use efficiency, and leaf quality responses to deficit irrigation and plant population of spinach (Spinacia oleracea L.). Three irrigation regimes were imposed with a center pivot system, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Spinach seeds were planted on 11 Nov. 2003 at three plant populations: 494 (P-1), 618 (P-2), and 741 (P-3) thousand seeds/ha on cvs. DMC 16 and ASR 157, and on 15 Oct. 2004 at four plant populations: 655, 815, 988, and 1149 thousand seeds/ha on cv. DMC 16. Harvests were done on 3 Mar. 2004 and 26 Jan. 2005. In the first season, marketable yield was not reduced by deficit irrigation, but water use efficiency was significantly higher for 50% ETc compared to 100% ETc. The cv. DMC 16 had a significantly lower percentage of stem weight than ASR 157 (8.3 vs. 16.4%). The cv. ASR 157 had an excess of stem weight at 100% and 75% ETc compared to 50% ETc at P-1, but similar at P-2 and P-3. The cv. DMC 16 had a trend of reduced stem weight for P3 at 50% ETc. In the second season, marketable yield was reduced by deficit irrigation. However, water use efficiency was significantly higher for 50% ETc compared to 100% ETc, but similar to 75% ETc. Deficit irrigation also decreased the percentage of stem weight. Despite a slight increase in the percentage of of yellow leaves, but not in percentage of of stem weight, marketable yield and water use efficiency were significantly higher at 1149 thousand seeds/ha. This study showed that deficit irrigation in combination with increased plant population has the potential to increase yield and water savings, without adversely affecting leaf quality.


HortScience ◽  
2002 ◽  
Vol 37 (1) ◽  
pp. 104-107 ◽  
Author(s):  
Eric Simonne ◽  
Nadia Ouakrim ◽  
Arnold Caylor

Potato (Solanum tuberosum L.) is often produced as a nonirrigated crop in the southeastern United States. This practice makes tuber yields dependent on rainfall pattern and amount. An irrigation scheduling method based on a water balance and daily class A pan evaporation (Ep) was evaluated during 1996 and 1998 on a Hartsells fine sandy loam soil for `Red LaSoda' potatoes. Planting dates were 9 and 7 Apr. in 1996 and 1998, respectively, and standard production practices were followed each year. The model tested was (13 DAH + 191) * 0.5 ASW = D DAH-1 + [Ep * (0.12 + 0.023 DAH - 0.00019 DAH2) - RDAH - IDAH], where DAH was days after hilling, ASW was available soil water (0.13 mm/mm), D was soil water deficit (mm), R was rainfall (mm), and I was irrigation (mm). Controlled levels of water application ranging between 0% and 200% of the model rate were created with drip tapes. Four and seven irrigations were scheduled in 1996 and 1998, respectively. For both years, no interaction between irrigation regime and nitrogen rate was observed. Irrigation rate significantly influenced total yield and marketable yield (R2 > 0.88, P < 0.01). Highest total yields occurred at 99% and 86% of the model rate in 1996 and 1998, respectively. These results show that supplementing rainfall with irrigation and controlling the amount of water applied by adjusting irrigation to actual weather conditions increased potato marketable yield. Over the 2-year period of the study, an average additional profit of $563/ha/year was calculated from costs and returns due to irrigation, suggesting that drip-irrigation may be economical for potato production.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


Sign in / Sign up

Export Citation Format

Share Document