scholarly journals Stability Analysis of Paste Filling Roof by Cut and Fill Mining

2021 ◽  
Vol 13 (19) ◽  
pp. 10899
Author(s):  
Qingliang Chang ◽  
Yifeng Sun ◽  
Qiang Leng ◽  
Zexu Liu ◽  
Huaqiang Zhou ◽  
...  

Ensuring the stability of paste false rooves is an important issue in the study of the process of paste filling and slicing mining. Here, a mechanical model of a paste false roof is created to analyze its stability in the process of lower slicing mining in order to determine the minimum slicing thickness of the false roof. We use FLAC3D to simulate and analyze the influence of changes in paste false roof thickness on the stability of the roof. The quantitative functional relationship between the thickness and the subsidence of a false roof, and the optimal thickness of the artificial paste roof, is finally obtained by the development law of the plastic zone in the lower slicing face. The results show that when the thickness of the paste false roof is 3.2 m, the roof can maintain its self-stabilization state and ensure the normal mining of lower layers. Because the same thickness of the upper and lower layers is beneficial for mining replacement and equipment selection in different layered working faces, the optimal thickness of a paste false roof is determined to be 3.2 m.

2011 ◽  
Vol 90-93 ◽  
pp. 1900-1903
Author(s):  
Fu Ming Wang ◽  
Xiao Long Li ◽  
Yan Hui Zhong ◽  
Xiao Guang Chen

Taking Chaijiazhuang Tunnel of Lingnan Expressway as project background, the stability analysis of surrounding rock was performed based on the coupled fluid-solid theory. The distributions of stress field, displacement field and plastic zone of rock mass after excavation of tunnel were discussed considering coupled effect between flow and stress under the condition of different rock level and tunnel depth. Compared with the calculation results of not considering coupling effect, the maximum deformation, maximum principle stress and plastic zone size of wall rock were obviously increased when considering coupling effect, which showed a remarkable influence of coupled fluid-solid effect on the stability of tunnel surrounding rock. Some conclusions were drawn and may provide some guidance to the design and construction of tunnels in water-rich strata.


2014 ◽  
Vol 501-504 ◽  
pp. 1732-1735
Author(s):  
Jie Liu ◽  
Liang Tang ◽  
Ya Zuo ◽  
Jin Long Guo

Analyzing and Evaluating the stability of the surrounding rock is an indispensable and important part in the tunnel design. In this paper, the surrounding rock stability of Danba hydropower station diversion tunnel is dealt with, FLAC3Dsoftware is used for stability analysis. Selecting three different cross sections for calculation models, comparing with the displacement and principal stress and the plastic zone which calculated by FLAC3D, we can evaluate their stability and get the best diversion tunnel design.


2011 ◽  
Vol 94-96 ◽  
pp. 1793-1799
Author(s):  
Xu Dong Li ◽  
Chao Su

Many hydroelectric power stations are constructed on rock foundations. Therefore, the stability of rock slope is critical for the engineering especially in the excavation state. The analysis for consequent rock slopes is not identical with the earth slope because of their material characteristics. In this paper, it is combined the elastic-plastic finite element method and safe factor strength reduction method for the solution of problem. Considering the multi-layer material of the rock slope, Drucker- Prager criterion is adopted for determining the yield station which has the modified format of Morh-Coulomb criterion overcome the corner point problem of application proper for rock material. The conditions both of displacement mutability and cut-through of plastic zone are described in detail and research deep for failure judged. Analysis and compare of the situations which contain displacement, plastic zone between pre-excavation and post-excavation by certain numerical example, some useful results are given for stability analysis of consequent rock slope.


2019 ◽  
Vol 1 (1) ◽  
pp. 49-60
Author(s):  
Simon Heru Prassetyo ◽  
Ganda Marihot Simangunsong ◽  
Ridho Kresna Wattimena ◽  
Made Astawa Rai ◽  
Irwandy Arif ◽  
...  

This paper focuses on the stability analysis of the Nanjung Water Diversion Twin Tunnels using convergence measurement. The Nanjung Tunnel is horseshoe-shaped in cross-section, 10.2 m x 9.2 m in dimension, and 230 m in length. The location of the tunnel is in Curug Jompong, Margaasih Subdistrict, Bandung. Convergence monitoring was done for 144 days between February 18 and July 11, 2019. The results of the convergence measurement were recorded and plotted into the curves of convergence vs. day and convergence vs. distance from tunnel face. From these plots, the continuity of the convergence and the convergence rate in the tunnel roof and wall were then analyzed. The convergence rates from each tunnel were also compared to empirical values to determine the level of tunnel stability. In general, the trend of convergence rate shows that the Nanjung Tunnel is stable without any indication of instability. Although there was a spike in the convergence rate at several STA in the measured span, that spike was not replicated by the convergence rate in the other measured spans and it was not continuous. The stability of the Nanjung Tunnel is also confirmed from the critical strain analysis, in which most of the STA measured have strain magnitudes located below the critical strain line and are less than 1%.


1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


Sign in / Sign up

Export Citation Format

Share Document