scholarly journals Lockdowns Save People from Air Pollution: Evidence from Daily Global Tropospheric NO2 Satellite Data

2021 ◽  
Vol 13 (21) ◽  
pp. 11777
Author(s):  
Sunbin Yoo ◽  
Shunsuke Managi

Motivated by the global fear of the Coronavirus-19 (COVID-19) pandemic, we investigated whether lockdowns save people from air pollution, notably from Nitrogen Dioxide (NO2). Using daily satellite data from the National Aeronautics and Space Administration (NASA), we first found that the global NO2 tropospheric vertical column density (TVCD) decreased by 16.5% after the Coronavirus-19 (COVID-19) outbreak. Then, we calculated the global health benefits, as the monetized value of life, using the value of a statistical life (VSL). The total global health benefits were approximately 8.73 trillion USD, accounting for 10% of the global GDP; such benefits would be the largest in China, followed by the United States, Japan and Germany. Our results suggest that lockdowns may bring benefits to countries that policy interventions cannot easily bring, thus highlighting the importance of social distancing.

2009 ◽  
Vol 9 (11) ◽  
pp. 3641-3662 ◽  
Author(s):  
D. Chen ◽  
B. Zhou ◽  
S. Beirle ◽  
L. M. Chen ◽  
T. Wagner

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.


Author(s):  
A. Fernandes ◽  
M. Riffler ◽  
J. Ferreira ◽  
S. Wunderle ◽  
C. Borrego ◽  
...  

Satellite data provide high spatial coverage and characterization of atmospheric components for vertical column. Additionally, the use of air pollution modelling in combination with satellite data opens the challenging perspective to analyse the contribution of different pollution sources and transport processes. The main objective of this work is to study the AOD over Portugal using satellite observations in combination with air pollution modelling. For this purpose, satellite data provided by Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on-board the geostationary Meteosat-9 satellite on AOD at 550 nm and modelling results from the Chemical Transport Model (CAMx - Comprehensive Air quality Model) were analysed. The study period was May 2011 and the aim was to analyse the spatial variations of AOD over Portugal. In this study, a multi-temporal technique to retrieve AOD over land from SEVIRI was used. The proposed method takes advantage of SEVIRI's high temporal resolution of 15 minutes and high spatial resolution. <br><br> CAMx provides the size distribution of each aerosol constituent among a number of fixed size sections. For post processing, CAMx output species per size bin have been grouped into total particulate sulphate (PSO4), total primary and secondary organic aerosols (POA + SOA), total primary elemental carbon (PEC) and primary inert material per size bin (CRST_1 to CRST_4) to be used in AOD quantification. The AOD was calculated by integration of aerosol extinction coefficient (Qext) on the vertical column. The results were analysed in terms of temporal and spatial variations. The analysis points out that the implemented methodology provides a good spatial agreement between modelling results and satellite observation for dust outbreak studied (10th -17th of May 2011). A correlation coefficient of r=0.79 was found between the two datasets. This work provides relevant background to start the integration of these two different types of the data in order to improve air pollution assessment.


2018 ◽  
Vol 11 (4) ◽  
pp. 2239-2255 ◽  
Author(s):  
Theano Drosoglou ◽  
Maria Elissavet Koukouli ◽  
Natalia Kouremeti ◽  
Alkiviadis F. Bais ◽  
Irene Zyrichidou ◽  
...  

Abstract. In this study, the tropospheric NO2 vertical column density (VCD) over an urban site in Guangzhou megacity in China is investigated by means of MAX-DOAS measurements during a campaign from late March 2015 to mid-March 2016. A MAX-DOAS system was deployed at the Guangzhou Institute of Geochemistry of the Chinese Academy of Sciences and operated there for about 1 year, during the spring and summer months. The tropospheric NO2 VCDs retrieved by the MAX-DOAS are presented and compared with space-borne observations from GOME-2/MetOp-A, GOME-2/MetOp-B and OMI/Aura satellite sensors. The comparisons reveal good agreement between satellite and MAX-DOAS observations over Guangzhou, with correlation coefficients ranging between 0.795 for GOME-2B and 0.996 for OMI. However, the tropospheric NO2 loadings are underestimated by the satellite sensors on average by 25.1, 10.3 and 5.7 %, respectively, for OMI, GOME-2A and GOME-2B. Our results indicate that GOME-2B retrievals are closer to those of the MAX-DOAS instrument due to the lower tropospheric NO2 concentrations during the days with valid GOME-2B observations. In addition, the effect of the main coincidence criteria is investigated, namely the cloud fraction (CF), the distance (d) between the satellite pixel center and the ground-based measurement site, as well as the time period within which the MAX-DOAS data are averaged around the satellite overpass time. The effect of CF and time window criteria is more profound on the selection of OMI overpass data, probably due to its smaller pixel size. The available data pairs are reduced to half and about one-third for CF  ≤  0.3 and CF  ≤  0.2, respectively, while, compared to larger CF thresholds, the correlation coefficient is improved to 0.996 from about 0.86, the slope value is very close to unity ( ∼  0.98) and the mean satellite underestimation is reduced to about half (from  ∼  7 to  ∼  3.5  ×  1015 molecules cm−2). On the other hand, the distance criterion affects mostly GOME-2B data selection, because GOME-2B pixels are quite evenly distributed among the different radii used in the sensitivity test. More specifically, the number of collocations is notably reduced when stricter radius limits are applied, the r value is improved from 0.795 (d ≤  50 km) to 0.953 (d ≤  20 km), and the absolute mean bias decreases about 6 times for d ≤  30 km compared to the reference case (d ≤  50 km).


2020 ◽  
Vol 13 (3) ◽  
pp. 1413-1426 ◽  
Author(s):  
Ping Wang ◽  
Ankie Piters ◽  
Jos van Geffen ◽  
Olaf Tuinder ◽  
Piet Stammes ◽  
...  

Abstract. Tropospheric NO2 and stratospheric NO2 vertical column densities are important TROPOspheric Monitoring Instrument (TROPOMI) data products. In order to validate the TROPOMI NO2 products, KNMI Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments have measured NO2 on ship cruises over the Atlantic and the Pacific oceans. The MAX-DOAS instruments have participated in five cruises on board RV Sonne (in 2017 and 2019) and RV Maria S. Merian (in 2018). The MAX-DOAS measurements were acquired over 7 months and spanned about 90∘ in latitude and 300∘ in longitude. During the cruises aerosol measurements from Microtops sun photometers were also taken. The MAX-DOAS measured stratospheric NO2 columns between 1.5×1015 and 3.5×1015 molec cm−2 and tropospheric NO2 up to 0.6×1015 molec cm−2. The MAX-DOAS stratospheric NO2 vertical column densities have been compared with TROPOMI stratospheric NO2 vertical column densities and the stratospheric NO2 vertical column densities simulated by the global chemistry Transport Model, version 5, Massively Parallel model (TM5-MP). Good correlation is found between the MAX-DOAS and TROPOMI and TM5 stratospheric NO2 vertical column densities, with a correlation coefficient of 0.93 or larger. The TROPOMI and TM5 stratospheric NO2 vertical column densities are about 0.4×1015 molec cm−2 (19 %) higher than the MAX-DOAS measurements. The TROPOMI tropospheric NO2 also has good agreement with the MAX-DOAS measurements. The tropospheric NO2 vertical column density is as low as 0.5×1015 molec cm−2 over remote oceans.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 444 ◽  
Author(s):  
Chunjiao Wang ◽  
Ting Wang ◽  
Pucai Wang

In recent years, new and strict air quality regulations have been implemented in China. Therefore, it is of great significance to evaluate the current air pollution situation and effectiveness of actions. In this study, Ozone Monitoring Instrument (OMI) satellite data were used to detect the spatiotemporal characteristics of tropospheric NO2 columns over China from 2005 to 2018, including spatial distribution, seasonal cycles and long-term trends. The averaged NO2 pollution is higher in southeastern China and lower in the northwest, which are well delineated by the Heihe–Tengchong line. Furthermore, the NO2 loadings are highest in the North China Plain, with vertical column density (VCD) exceeding 13 × 1015 molec cm−2. Regarding the seasonal cycle, the NO2 loadings in eastern China is highest in winter and lowest in summer, while the western region shows the opposite feature. The amplitude of annual range increase gradually from the south to the north. If the entire period of 2005–2018 is taken into account, China has experienced little change in NO2. In fact, however, there appears to be significant trends of an increase followed by a downward tendency, with the turning point in the year 2012. In the former episode of 2005–2012, increasing trends overwhelm nearly the whole nation, especially in the Jing–Jin–Tang region, Shandong Province, and Northern Henan and Southern Hebei combined regions, where the rising rates were as high as 1.0–1.8 × 1015 molec cm−2 year−1. In contrast, the latter episode of 2013–2018 features remarkable declines in NO2 columns over China. Particularly, the regions where the decreased degree was remarkable in 2013–2018 were consistent with the regions where the upward trend was obvious in 2005–2012. Overall, this upward–downward pattern is true for most parts of China. However, some of the largest metropolises, such as Beijing, Shanghai and Guangzhou, witnessed a continuous decrease in the NO2 amounts, indicating earlier and more stringent measures adopted in these areas. Finally, it can be concluded that China’s recent efforts to cut NO2 pollution are successful, especially in mega cities.


2011 ◽  
Vol 11 (22) ◽  
pp. 11761-11775 ◽  
Author(s):  
C. J. Lee ◽  
J. R. Brook ◽  
G. J. Evans ◽  
R. V. Martin ◽  
C. Mihele

Abstract. Ozone Monitoring Instrument (OMI) tropospheric NO2 vertical column density data were used in conjunction with in-situ NO2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO2 concentrations at 0.1° (~11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated directly across the US-Canada border from Detroit, MI. Photolytic NO2 monitors were collocated with standard NO2 monitors to provide qualitative data regarding NOz interference during the campaign. The accuracy of the OMI-inferred concentrations was tested using two-week integrative NO2 measurements collected with passive monitors at 18 locations, approximating a 15 km grid across the region, for 7 consecutive two-week periods. When compared with these passive results, satellite-inferred concentrations showed an 18% positive bias. The correlation of the passive monitor and OMI-inferred concentrations (R=0.69, n=115) was stronger than that for the passive monitor concentrations and OMI column densities (R=0.52), indicating that using a sparse network of monitoring sites to estimate concentrations improves the direct utility of the OMI observations. OMI-inferred concentrations were then calculated for four years to show an overall declining trend in surface NO2 concentrations in the region. Additionally, by separating OMI-inferred surface concentrations by wind direction, clear patterns in emissions and affected down-wind regions, in particular around the US-Canada border, were revealed.


Sign in / Sign up

Export Citation Format

Share Document