scholarly journals Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain

2021 ◽  
Vol 13 (23) ◽  
pp. 13076
Author(s):  
Ashutosh Sharma ◽  
Elizaveta Podoplelova ◽  
Gleb Shapovalov ◽  
Alexey Tselykh ◽  
Alexander Tselykh

Recently, 6G-enabled Internet of Things (IoT) is gaining attention and addressing various challenges of real time application. The artificial intelligence plays a significant role for big data analytics and presents accurate data analysis in real time. However, designing big data analysis through artificial intelligence faces some issues in terms of security, privacy, training data, and centralized architecture. In this article, blockchain-based IoT framework with artificial intelligence is proposed which presents the integration of artificial intelligence and blockchain for IoT applications. The performance of the proposed architecture is evaluated in terms of qualitative and quantitative measurement. For qualitative measurement, how the integration of blockchain and artificial intelligence addresses various issues are described with the description of AI oriented BC and BC oriented AI. The performance evaluation of proposed AI-BC architecture is evaluated and compared with existing techniques in qualitative measurement. The experimental analysis shows that the proposed framework performs better in comparison with the existing state of art techniques.

Author(s):  
Suresh P. ◽  
Keerthika P. ◽  
Sathiyamoorthi V. ◽  
Logeswaran K. ◽  
Manjula Devi R. ◽  
...  

Cloud computing and big data analytics are the key parts of smart city development that can create reliable, secure, healthier, more informed communities while producing tremendous data to the public and private sectors. Since the various sectors of smart cities generate enormous amounts of streaming data from sensors and other devices, storing and analyzing this huge real-time data typically entail significant computing capacity. Most smart city solutions use a combination of core technologies such as computing, storage, databases, data warehouses, and advanced technologies such as analytics on big data, real-time streaming data, artificial intelligence, machine learning, and the internet of things (IoT). This chapter presents a theoretical and experimental perspective on the smart city services such as smart healthcare, water management, education, transportation and traffic management, and smart grid that are offered using big data management and cloud-based analytics services.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2994 ◽  
Author(s):  
Bhagya Silva ◽  
Murad Khan ◽  
Changsu Jung ◽  
Jihun Seo ◽  
Diyan Muhammad ◽  
...  

The Internet of Things (IoT), inspired by the tremendous growth of connected heterogeneous devices, has pioneered the notion of smart city. Various components, i.e., smart transportation, smart community, smart healthcare, smart grid, etc. which are integrated within smart city architecture aims to enrich the quality of life (QoL) of urban citizens. However, real-time processing requirements and exponential data growth withhold smart city realization. Therefore, herein we propose a Big Data analytics (BDA)-embedded experimental architecture for smart cities. Two major aspects are served by the BDA-embedded smart city. Firstly, it facilitates exploitation of urban Big Data (UBD) in planning, designing, and maintaining smart cities. Secondly, it occupies BDA to manage and process voluminous UBD to enhance the quality of urban services. Three tiers of the proposed architecture are liable for data aggregation, real-time data management, and service provisioning. Moreover, offline and online data processing tasks are further expedited by integrating data normalizing and data filtering techniques to the proposed work. By analyzing authenticated datasets, we obtained the threshold values required for urban planning and city operation management. Performance metrics in terms of online and offline data processing for the proposed dual-node Hadoop cluster is obtained using aforementioned authentic datasets. Throughput and processing time analysis performed with regard to existing works guarantee the performance superiority of the proposed work. Hence, we can claim the applicability and reliability of implementing proposed BDA-embedded smart city architecture in the real world.


Author(s):  
Damminda Alahakoon ◽  
Rashmika Nawaratne ◽  
Yan Xu ◽  
Daswin De Silva ◽  
Uthayasankar Sivarajah ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. 100192
Author(s):  
Mariagrazia Fugini ◽  
Jacopo Finocchi ◽  
Paolo Locatelli

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 20
Author(s):  
Reynaldo Villarreal-González ◽  
Antonio J. Acosta-Hoyos ◽  
Jaime A. Garzon-Ochoa ◽  
Nataly J. Galán-Freyle ◽  
Paola Amar-Sepúlveda ◽  
...  

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.


2020 ◽  
Vol 10 (1) ◽  
pp. 343-356
Author(s):  
Snezana Savoska ◽  
Blagoj Ristevski

AbstractNowadays, big data is a widely utilized concept that has been spreading quickly in almost every domain. For pharmaceutical companies, using this concept is a challenging task because of the permanent pressure and business demands created through the legal requirements, research demands and standardization that have to be adopted. These legal and standards’ demands are associated with human healthcare safety and drug control that demands continuous and deep data analysis. Companies update their procedures to the particular laws, standards, market demands and regulations all the time by using contemporary information technology. This paper highlights some important aspects of the experience and change methodology used in one Macedonian pharmaceutical company, which has employed information technology solutions that successfully tackle legal and business pressures when dealing with a large amount of data. We used a holistic view and deliverables analysis methodology to gain top-down insights into the possibilities of big data analytics. Also, structured interviews with the company’s managers were used for information collection and proactive methodology with workshops was used in data integration toward the implementation of big data concepts. The paper emphasizes the information and knowledge used in this domain to improve awareness for the needs of big data analysis to achieve a competitive advantage. The main results are focused on systematizing the whole company’s data, information and knowledge and propose a solution that integrates big data to support managers’ decision-making processes.


Sign in / Sign up

Export Citation Format

Share Document