scholarly journals Mapping the Energy Flows and GHG Emissions of a Medium-Size City: The Case of Valladolid (Spain)

2021 ◽  
Vol 13 (23) ◽  
pp. 13181
Author(s):  
Gaspar Manzanera-Benito ◽  
Iñigo Capellán-Pérez

Valladolid (Spain) is a medium-size city (~300,000 inhabitants) that established a greenhouse (GHG) emissions reduction target in 2011 of 20% from 2010–2020. However, tracking the evolution of GHG in medium-size cities is challenging due to the general lack of compulsory data collection at this scale and issues with boundaries when attempting alternative estimates. Here, we propose and apply a novel method to estimate the evolution of GHG emissions due to energy consumption for the period of 2010–2019 in Valladolid, combining top-down and bottom-up data following a physical energy flows approach. The energy consumption of the city is estimated by main sectors and types of energies. The results show that, throughout the past decade, both total energy consumption and its sector end-use share did not significantly change: final energy consumption remained at around 24 MWh (86.5 GJ) per capita and was still highly dependent on fossil fuels, especially natural gas and oil products (over 70% of total energy supply). The GHG reduction by 2019 was ~11% with relation to 2010 and, thus, had not reached the set objective; in per capita terms, the GHG reduction was lower (~6%) due to population loss during the period. The trend, however, has not been monotone and has instead followed a U-shape strongly correlated with the economic crisis and subsequent recovery, suggesting that transition policies have had, at most, a modest effect on the overall results. The analysis shows, first of all, the limitations of statistical sources at a local level, both for energy and mobility, which do not allow more accurate results in identifying the main energy consumers to be reached; and, secondly, the need for strong decarbonization measures which have to be set urgently at all the relevant institutional levels. Reaching GHG neutrality in the city by 2050 requires reducing the GHG emissions by ~13%/year, which is ~20 times faster than for the 2010–2019 average of 0.6%/year.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 635
Author(s):  
Jonathan R. Bailey ◽  
Saria Bukhary ◽  
Jacimaria R. Batista ◽  
Sajjad Ahmad

Wastewater treatment is a very energy-intensive process. The growing population, increased demands for energy and water, and rising pollution levels caused by fossil-fuel-based energy generation, warrants the transition from fossil fuels to renewable energy. This research explored the energy consumption offset of a satellite water reuse plant (WRP) by using solar photovoltaics (PVs) and anaerobic digestion. The analysis was performed for two types of WRPs: conventional (conventional activated sludge system (CAS) bioreactor with secondary clarifiers and dual media filtration) and advanced (bioreactor with membrane filtration (MBR)) treatment satellite WRPs. The associated greenhouse gas (GHG) emissions were also evaluated. For conventional treatment, it was found that 28% and 31.1% of the WRP’s total energy consumption and for advanced treatment, 14.7% and 5.9% of the WRP’s total energy consumption could be generated by anaerobic digestion and solar PVs, respectively. When both energy-generating units are incorporated in the satellite WRPs, MBR WRPs were on average 1.86 times more energy intensive than CAS WRPs, translating to a cost savings in electricity of $7.4/1000 m3 and $13.3/1000 m3 treated, at MBR and CAS facilities, respectively. Further, it was found that solar PVs require on average 30% longer to pay back compared to anaerobic digestion. For GHG emissions, MBR WRPs without incorporating energy generating units were found to be 1.9 times more intensive than CAS WRPs and 2.9 times more intensive with energy generating units. This study successfully showed that the addition of renewable energy generating units reduced the energy consumption and carbon emissions of the WRP.


Author(s):  
E. Rozhnov

Линейная удаленность объектов в г. Новокузнецке достигает 40 км с разницей высотных отметок 157 м. Два главных водозабора города удалены друг от друга на расстояние 20 км, что предполагает наличие зон с разным свободным напором. Управление давлением и распределение воды по районам традиционно осуществлялось дросселированием запорной арматурой, а в исходной схеме водоснабжения функционировали 119 насосных станций с агрегатами мощностью от 0,75 до 1250 кВт. По результатам анализа возможных путей решения проблемы были сформированы предложения по установке редукционных клапанов, разработана схема их установки и определены режимы работы новой системы. Установка регуляторов по всему городу решалась в два этапа. В 2016 г. в результате установки семи регуляторов были остановлены 13 повысительных насосных станций общей мощностью более 150 кВт. На втором этапе в 2017 г. были установлены еще 12 регуляторов и остановлены 8 станций общей мощностью 40 кВт, а на пяти станциях была выполнена оптимизация с заменой насосов агрегатами меньшей мощности. Окупаемость проекта составила 4 года.The linear remoteness of the water facilities in the city of Novokuznetsk reaches 40 km with a difference in elevations of 157 m. The two main water intakes of the city are located at the distance of 20 km from each other, which suggests the availability of zones with different free head. Pressure control and water distribution among the districts was traditionally carried out by throttling shutoff valves, and 119 pumping stations with pumps of 0.751250 kW capacity were operating in the initial water supply scheme. Based on the analysis of possible solutions to the problem, proposals were made for the installation of pressure reducing valves, an installation diagram was developed, and the operating modes of the new system were determined. The installation of regulators throughout the city was carried out in two stages. In 2016, as a result of the installation of 7 regulators, 13 booster pumping stations with a total energy consumption of more than 150 kW were phased out at the second stage in 2017, 12 more regulators were installed and 8 more pumping stations with a total energy consumption of 40 kW were put out of operation and 5 pumping stations were upgraded with pump replacement for lower capacity. The project payback period was 4 years.


Author(s):  
Pramila Dhaubanjar ◽  
Amrit Man Nakarmi ◽  
Sushil B. Bajracharya

This study aims to analyse energy scenarios of residential sector in Panauti Municipality for sustainable energy development and energy security. This study was done by conducting a questionnaire survey, and was supported by secondary data from various sources. Data analysis was carried out with the help of excel and LEAP software. From the results, total energy consumption of Panauti Municipality is 147 TJ in year 2016 with per capita is 4.72GJ and per capita emission 82kg. The main fuel for consumption in residential sector is firewood with share 44% then followed by LPG with 26% of total energy. Cooking is the most energy intensive end-use, accounting 60% of total energy consumption, followed by animal feed preparation 28%. It was seen that total electrification in all end-use can reduce energy demand by 57% and 35% respectively in AEL and SUD scenario and saved fuel import cost about NRs.235 million. in year 2050. Using nationally available electricity ensures energy security and has co-benefit of emission reduction.


2018 ◽  
Vol 5 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Md. Sujahangir Kabir Sarkar ◽  
Sumaiya Sadeka ◽  
Md. Mehedi Hasan Sikdar ◽  
Badiuzzaman

Energy consumption is increasing due to the expansion of economic activity and population size which results higher GHG emission worldwide. The study has examined the trends of energy consumption and CO2 emission in Bangladesh using the secondary data extracted from the World Development Indicators of the World Bank database. The results found that there is an increasing trend of total energy consumption and per capita energy consumption in Bangladesh from 1991 to 2012 where the total energy consumption has been increased nearly three times from 12.55 mtoe (million tonne oil equivalent) in 1991 to 33.17 mtoe in 2012. The total CO2 emission was estimated by 57.07 mtoe in 2011 which was increased by 140.67% compared to the 1991 emission of 15.94 mtoe. Thus, the CO2 emission and per capita emission has also provided increasing trend over the period of 1991 to 2011.It has revealed that the growth of CO2 emission found to be higher than the growth of GDP and energy consumption in Bangladesh. The yearly average growth of CO2 emission has estimated by 6.7% which is higher that the annual average growth of GDP and energy consumption as of 5.25% and 4.77% respectively. This situation calls for serious attention of the country for reducing CO2 emission. Therefore, government needs to develop a national mitigation plan/policy and promote the use and development of green technology, renewable energy and green growth for sustainable energy and environment in Bangladesh.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Sign in / Sign up

Export Citation Format

Share Document