scholarly journals Optimization of Ecosystem Services of Shanghai Urban–Suburban Street Trees Based on Low-Carbon Targets

2021 ◽  
Vol 13 (23) ◽  
pp. 13251
Author(s):  
Yugang Chen ◽  
Changkun Xie ◽  
Ruiyuan Jiang ◽  
Shengquan Che

Road traffic carbon emissions are an important cause of global warming, and street trees play an important role in regulating road carbon emissions. During urbanization, major differences in the planting management modes and growth status of the street trees in urban–suburban gradient may exist, leading to significant differences in the low-carbon values of the street trees in urban–suburban gradient. Based on this, this study took two typical urban–suburban gradient zones in Shanghai as an example to analyze the changes in the characteristics of street tree species, planting density, tree sizes, and low-carbon contribution with urban and rural changes, and proposed strategies for optimizing the low-carbon contribution of urban street trees. The results showed that, from the inner ring to the outer ring and the suburban ring, the proportion of London plane tree gradually changed from 82% to 11%, and the proportion of the camphor tree gradually changed from 9% to 70%; the average DBH of the trees gradually decreased from 28.81 to 23.74 cm. The number of plantings per unit road length gradually increased, and the number of plantings per unit area gradually decreased; therefore, the average low-carbon contribution of urban–suburban street trees is not significant, but the low-carbon contribution of upper street trees per unit area is higher, and suburban unit street trees have a higher low-carbon contribution. Finally, this article proposes different optimization strategies for future urban micro-renewal and suburban new-city construction.

2020 ◽  
Vol 12 (24) ◽  
pp. 10251
Author(s):  
Jing Gan ◽  
Linheng Li ◽  
Qiaojun Xiang ◽  
Bin Ran

The increasing vehicle usage has brought about a sharp increase in greenhouse gas (GHG) emissions of vehicles, which brings severe challenges to the sustainable development of road transportation in Chinese counties. Low-carbon transportation planning is an essential strategy for carbon control from the source of carbon emissions and is crucial to the full transition to a low-carbon future. For transportation planning designers, a quick and accurate estimation of carbon emissions under different transportation planning schemes is a prerequisite to determine the optimal low-carbon transportation development plan. To address this issue, a novel prediction method of hourly GHG emissions over the urban roads network was constructed in this paper. A case study was conducted in Changxing county, and the results indicate the effectiveness of our proposed method. Furthermore, we applied the same approach to 30 other counties in China to analyze the influencing factors of emissions from urban road networks in Chinese counties. The analysis results indicate that the urban road mileage and arterial road ratio are the two most important factors affecting road network GHG emissions in road traffic planning process. Moreover, the method was employed to derive peak hour emission coefficients that can be used to quickly estimate daily or annual GHG emissions. The peak hour emission of CO2, CH4, and N2O accounts for approximately 9–10%, 8.5–10.5%, 5.5–7.5% of daily emissions, respectively. It is expected that the findings from this study would be helpful for establishing effective carbon control strategies in the transportation planning stage to reduce road traffic GHG emissions in counties.


2012 ◽  
Vol 524-527 ◽  
pp. 2381-2387
Author(s):  
Wei Li Zhai ◽  
Wen Ping Peng

After the UN climate conference in Copenhagen and the Cancun conference in Mexico, the world pays more attention to low-carbon development. Low-carbon city is an important path to develop the low-carbon economy. Countries all over the world have take action now: Britain’s climate change action plan; Danish’s low-carbon communities; Japan’s low-carbon society action plan. In the sixth nationwide population census, urban population closes to the rural population. Urban create 70 percent GDP, it is also a major source of carbon emissions. How economic development decouple from carbon emissions in the process of industrialization, it is a major problem encountered in China. In this paper, it describes the process of the low-carbon city evolution and the concept of the low-carbon city firstly, then it analyses the status of low-carbon city construction in our country secondly, finally the paper puts forward countermeasures. The countermeasure will has important meaning to develop low-carbon economy in our country.


2019 ◽  
Vol 11 (1) ◽  
pp. 219 ◽  
Author(s):  
Shuxia Yang ◽  
Yu Ji ◽  
Di Zhang ◽  
Jing Fu

China has allocated low-carbon targets into all regions and trades, and road traffic also has its own emission reduction targets. Congestion may increase carbon emissions from road traffic. It is worthwhile to study whether it is possible to achieve the goal of road traffic reduction by controlling congestion; that is, to achieve the equilibrium between traffic congestion and a low-carbon economy. The innovation of this paper is mainly reflected in the innovative topic selection, the introduction of a traffic index, and the establishment of the first traffic congestion and low-carbon economic equilibrium model. First, the relevant calculation method of the traffic index is introduced, and the traffic index is used to quantify the traffic congestion degree. Using the traffic index, GDP, and road passenger traffic volume, a nonlinear regression model of road traffic carbon emissions is constructed. Then, the calculation method of the carbon emission intensity of road traffic in the region is proposed. The equilibrium model of traffic congestion and a low-carbon economy is constructed to look for the degree of road traffic congestion that may occur under the permitted carbon emission intensity. Taking Beijing, where electric vehicles account for less than 3% of the total vehicles, as an example, it is difficult to achieve the equilibrium target between road traffic congestion and a low-carbon economy by alleviating traffic congestion in 2020. If the target of traffic carbon emission reduction in 2020 is adjusted from 40%–45% to 19.7% based on 2005, the equilibrium will be achieved. A negative correlation between road traffic carbon emissions and the reciprocal of the traffic index (1/TI) is found after eliminating the effects of GDP and PTV (road passenger traffic volume). As the traffic index decreases by units, the carbon emission reduction accelerates. The results show that carbon reduction targets cannot be simply allocated to various industries. The results of the research on the degree of the impact of traffic congestion on carbon emissions can be used as a basis for carbon reduction decisions of the traffic sector. The research method of this paper can provide a reference for the study of the equilibrium of traffic congestion and a low-carbon economy in other regions.


2021 ◽  
Vol 241 ◽  
pp. 02003
Author(s):  
Jun Wang ◽  
Hua Zhao

With the further aggravation of global warming and the increasingly serious problems of ecological environment, the construction of low-carbon cities has become an inevitable choice for the global response to climate change and the sustainable development of economy and society. In order to understand the basic situation of China’s low-carbon cities more specifically, this paper selects countries with different urbanization rates to carry out benchmarking analysis with China, hoping to draw on the experience of other countries from the national level through multi-dimensional comparison, and guide the direction of China’s future urban development. Firstly, this paper selects the basic indicators such as the total amount of carbon dioxide emissions, per capita carbon emissions and carbon emissions per unit GDP of each country; Secondly, it compares the proportion of coal in energy and other indicators, and analyzes the energy structure of each country in depth; Thirdly, it compares the trend of carbon emissions in each country among 1990-2017. Finally, in order to reflect the carbon emission in the development of urbanization, this paper uses the “urbanization carbon emission index”, which is the ratio of per capita carbon emission and urbanization rate, to show the relationship between the degree of urbanization and carbon emission. Through benchmarking analysis, we can more clearly understand the overall trend of low-carbon city construction in different countries, recognize the gap between China and other countries, and better guide the development of low-carbon cities in China in the future.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2745-2750
Author(s):  
Xiao Fen Li ◽  
Rui Peng ◽  
Min Xing Yang

Under the background of ecological civilization, the energy saving and emission reduction, low carbon eco-city construction is booming. At present, China industrial carbon emissions account for more than half of total carbon emissions in the whole society. The analysis of industrial carbon emissions and its spatial distribution is quite important. Consider the Park of Shenzhen international low-carbon city as the research object; based on the enterprise data from the 2011 industrial census, it combines both the top-down and bottom-up methods to evaluate its current industrial carbon emission levels and then discusses the relationship between the industrial structure and carbon emissions. Comprehensive utilization of the spatial distribution function of GIS, the spatial distribution characteristics of industrial carbon emissions and carbon intensity is evaluated, so as to provide the references for the related policy-making of low-carbon ecological city.


2019 ◽  
Vol 4 (12) ◽  
Author(s):  
T B A

Global warming, climate change is now affecting the world. The effort of the leaders to achieving the sustainable development is from New Urban Agenda (NUA), Sustainable Development Goals (SDG’s) and local level is local authorities.  SDG’s goal number 13 takes urgent action to combat climate change and its impact also SDG’s number 11 to sustainable cities and communities. The gap of this paper  Different cities face different challenges and issues. Local authorities will play a significant role in undertaking policy initiatives to combat carbon emissions of the city. Low Carbon Cities (LCC) is to reduce carbon emissions in all human activities in cities.  The objective of this paper is by applying the LCCF Checklist in planning permission for sustainable development. The methodology of this research is a mixed-method, namely quantitative and qualitative approach. The survey methods are by interview, questionnaire, and observation. Town planners are the subject matter expert in managing the planning permission submission for the development control of their areas. Descriptive statistical analysis will be used to show the willingness of the stakeholders, namely the developers and planning consultants in implementing of the LCCF. The contribution of this research will gauge readiness at the local authorities level. The findings of the LCCF checklist are identified as important in planning permission into the development control process. Surprisingly, that challenges and issues exist in multifaceted policy implementation the LCCF Checklist in a local authority. Finally based on Subang Jaya Municipal Councils, the existing approach in the application of the LCCF Checklist in the development control process will be useful for development control in a local authority towards sustainable development.  


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
Hongpeng Guo ◽  
Sidong Xie ◽  
Chulin Pan

This paper focuses on the impact of changes in planting industry structure on carbon emissions. Based on the statistical data of the planting industry in three provinces in Northeast China from 1999 to 2018, the study calculated the carbon emissions, carbon absorptions and net carbon sinks of the planting industry by using crop parameter estimation and carbon emissions inventory estimation methods. In addition, the multiple linear regression model and panel data model were used to analyze and test the carbon emissions and net carbon sinks of the planting industry. The results show that: (1). The increase of the planting area of rice, corn, and peanuts in the three northeastern provinces of China will promote carbon emissions, while the increase of the planting area of wheat, sorghum, soybeans, and vegetables will reduce carbon emissions; (2). Fertilizer application, technological progress, and planting structure factors have a significant positive effect on net carbon sinks, among which the changes in the planting industry structure have the greatest impact on net carbon sinks. Based on the comprehensive analysis, it is suggested that, under the guidance of the government, resource endowment and location advantages should be given full play to, and the internal planting structure of crops should be reasonably adjusted so as to promote the development of low-carbon agriculture and accelerate the development process of agricultural modernization.


2019 ◽  
Vol 11 (9) ◽  
pp. 2571
Author(s):  
Xujing Zhang ◽  
Lichuan Wang ◽  
Yan Chen

Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises’ requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men’s shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.


Sign in / Sign up

Export Citation Format

Share Document