scholarly journals Investigating the Relationship between Human Activity and the Urban Heat Island Effect in Melbourne and Four Other International Cities Impacted by COVID-19

2021 ◽  
Vol 14 (1) ◽  
pp. 378
Author(s):  
Cheuk Yin Wai ◽  
Nitin Muttil ◽  
Muhammad Atiq Ur Rehman Tariq ◽  
Prudvireddy Paresi ◽  
Raphael Chukwuka Nnachi ◽  
...  

Climate change is one of the biggest challenges of our times, even before the onset of the Coronavirus (COVID-19) pandemic. One of the main contributors to climate change is greenhouse gas (GHG) emissions, which are mostly caused by human activities such as the burning of fossil fuels. As the lockdown due to the pandemic has minimised human activity in major cities, GHG emissions have been reduced. This, in turn, is expected to lead to a reduction in the urban heat island (UHI) effect in the cities. The aim of this paper is to understand the relationship between human activity and the UHI intensity and to provide recommendations towards developing a sustainable approach to minimise the UHI effect and improve urban resilience. In this study, historical records of the monthly mean of daily maximum surface air temperatures collected from official weather stations in Melbourne, New York City, Tokyo, Dublin, and Oslo were used to estimate the UHI intensity in these cities. The results showed that factors such as global climate and geographic features could dominate the overall temperature. However, a direct relationship between COVID-19 lockdown timelines and the UHI intensity was observed, which suggests that a reduction in human activity can diminish the UHI intensity. As lockdowns due to COVID-19 are only temporary events, this study also provides recommendations to urban planners towards long-term measures to mitigate the UHI effect, which can be implemented when human activity returns to normal.

2020 ◽  
Vol 12 (21) ◽  
pp. 3491 ◽  
Author(s):  
Mingxing Chen ◽  
Yuan Zhou ◽  
Maogui Hu ◽  
Yaliu Zhou

Global large-scale urbanization has a deep impact on climate change and has brought great challenges to sustainable development, especially in urban agglomerations. At present, there is still a lack of research on the quantitative assessment of the relationship between urban scale and urban expansion and the degree of the urban heat island (UHI) effect, as well as a discussion on mitigation and adaptation of the UHI effect from the perspective of planning. This paper analyzes the regional urbanization process, average surface temperature variation characteristics, surface urban heat island (SUHI), which reflects the intensity of UHI, and the relationship between urban expansion, urban scale, and the UHI in the Beijing–Tianjin–Hebei (BTH) urban agglomeration using multi-source analysis of data from 2000, 2005, 2010, and 2015. The results show that the UHI effect in the study area was significant. The average surface temperature of central areas was the highest, and decreased from central areas to suburbs in the order of central areas > expanding areas > rural residential areas. From the perspective of spatial distribution, in Beijing, the southern part of the study area, the junction of Tianjin, Langfang, and Cangzhou are areas with intense SUHI. The scale and pace of expansion of urban land in Beijing were more than in other cities, the influencing range of SUHI in Beijing increased obviously, and the SUHI of central areas was most intense. The results indicate that due to the larger urban scale of the BTH urban agglomeration, it will face a greater UHI effect. The UHI effect was also more significant in areas of dense distribution in cities within the urban agglomeration. Based on results and existing research, planning suggestions are proposed for central areas with regard to expanding urban areas and suburbs to alleviate the urban heat island effect and improve the resilience of cities to climate change.


2021 ◽  
Author(s):  
K. Heinke Schluenzen ◽  
Sue Grimmond ◽  
Alexander Baklanov

<p>Today, every second person lives in a city, and urbanization is continuously increasing. For 2050, it is to be expected that 2 out of 3 people will live in a city and thus the vast majority of the world's population will be affected not only by global climate change but also by locally induced climatic changes. The canopy layer urban heat island (CL-UHI) is one of the most well-known meteorological characteristics of urban areas found in cities small and large around the world. Its characteristics differ between cities, across a city and with time. The climate change induced warming cities experience is additionally impacted by the CL-UHI.</p><p>Despite the city-scale importance of CL-UHI, the WMO has not had any specific guidance on this. In response to the request of the 18th World Meteorological Congress (Resolutions 32 and 61) experts from WMO GAW (Global Atmosphere Watch) Urban Research Meteorology and Environment (GURME) initiated in 2020 preparation of a guidance on measuring, modelling and monitoring the CL-UHI. The guidance is a community-based development with 30 contributors providing expertise in all different aspects of CL-UHI. This includes a clear definition of what a CL-UHI is and clarifications of what it is not, how it develops (e.g. meteorological and morphological influences), methods to assess CL-UHI intensities (measurements,  modelling approaches) as well as when its assessment  (applications) is needed and how it can be reduced (or when it is beneficial).</p><p>The presentation will specifically focus on the key questions addressed in the guidance: what a CL-UHI is and what it is not, where CL-UHI values are relevant for and the many challenges that exist in simulating the CL-UHI with different models.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


2021 ◽  
Vol 13 (17) ◽  
pp. 9617 ◽  
Author(s):  
Wesam M. Elbardisy ◽  
Mohamed A. Salheen ◽  
Mohammed Fahmy

In the Middle East and North Africa (MENA) region, studies focused on the relationship between urban planning practice and climatology are still lacking, despite the fact that the latter has nearly three decades of literature in the region and the former has much more. However, such an unfounded relationship that would consider urban sustainability measures is a serious challenge, especially considering the effects of climate change. The Greater Cairo Region (GCR) has recently witnessed numerous serious urban vehicular network re-development, leaving the city less green and in need of strategically re-thinking the plan regarding, and the role of, green infrastructure. Therefore, this study focuses on approaches to the optimization of the urban green infrastructure, in order to reduce solar irradiance in the city and, thus, its effects on the urban climatology. This is carried out by studying one of the East Cairo neighborhoods, named El-Nozha district, as a representative case of the most impacted neighborhoods. In an attempt to quantify these effects, using parametric simulation, the Air Temperature (Ta), Mean Radiant Temperature (Tmrt), Relative Humidity (RH), and Physiological Equivalent Temperature (PET) parameters were calculated before and after introducing urban trees, acting as green infrastructure types that mitigate climate change and the Urban Heat Island (UHI) effect. Our results indicate that an optimized percentage, spacing, location, and arrangement of urban tree canopies can reduce the irradiance flux at the ground surface, having positive implications in terms of mitigating the urban heat island effect.


Sign in / Sign up

Export Citation Format

Share Document