scholarly journals Effectiveness of Nature-Inspired Algorithms using ANFIS for Blade Design Optimization and Wind Turbine Efficiency

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 456 ◽  
Author(s):  
Md. Sarkar ◽  
Sabariah Julai ◽  
Chong Wen Tong ◽  
Siti Toha

Blade design of the horizontal axis wind turbine (HAWT) is an important parameter that determines the reliability and efficiency of a wind turbine. It is important to optimize the capture of the energy in the wind that can be correlated to the power coefficient ( C p ) of HAWT system. In this paper, nature-inspired algorithms, e.g., ant colony optimization (ACO), artificial bee colony (ABC), and particle swarm optimization (PSO) are used to search for the blade parameters that can give the maximum value of C p for HAWT. The parameters are tip speed ratio, blade radius, lift to drag ratio, solidity ratio, and chord length. The performance of these three algorithms in obtaining the optimal blade design based on the C p are investigated and compared. In addition, an adaptive neuro-fuzzy interface (ANFIS) approach is implemented to predict the C p of wind turbine blades for investigation of algorithm performance based on the coefficient determination (R2) and root mean square error (RMSE). The optimized blade design parameters are validated with experimental results from the National Renewable Energy Laboratory (NREL). It was found that the optimized blade design parameters were obtained using an ABC algorithm with the maximum value power coefficient higher than ACO and PSO. The predicted C p using ANFIS-ABC also outperformed the ANFIS-ACO and ANFIS-PSO. The difference between optimized and predicted is very small which implies the effectiveness of nature-inspired algorithms in this application. In addition, the value of RMSE and R2 of the ABC-ANFIS algorithm were lower (indicating that the result obtained is more accurate) than the ACO and PSO algorithms.

2021 ◽  
pp. 1-28
Author(s):  
Mehmet Numan Kaya ◽  
Faruk Köse ◽  
Oguz Uzol ◽  
Derek Ingham ◽  
Lin Ma ◽  
...  

Abstract The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the Computational Fluid Dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine and the most appropriate swept blade design parameters, namely the sweep start up section, tip displacement and mode of the sweep have been investigated to obtain the maximum power coefficient at the design tip speed ratio. At this stage, a new equation that allows all three swept blade design parameters to be changed independently has been used to design swept blades, and the response surface method has been used to find out the optimum swept blade parameters. According to the results obtained, a significant increase of 4.28% in the power coefficient was achieved at the design tip speed ratio with the new designed optimum swept wind turbine blade. Finally, baseline and optimum swept blades have been compared in terms of power coefficients at different tip speed ratios, force distributions, pressure distributions and tip vortices.


Author(s):  
ANTHONY ADEYANJU ◽  
Omar Mohammed ◽  
Krishpersad Manohar

This study conducted simulation and experimental analysis on a dual rotor horizontal axis wind turbine to determine the effect of rotor separation on its performance. An air study was conducted to optimize the turbine blades to a local climate of Trinidad, it was determined that a NACA 64-315 air foil would be the most optimum for the conditions. QBlade software was used for the simulation, the power flow performance for multiple iterations of wind speed was found for the design. The effect of rotor separation on the performance of the dual rotor wind turbine was studied with rotor separation 0.25 m to 3.0 m at an interval of 0.25 m and it was discovered that the smallest rotor separation 0.25 m shows the largest tip speed ratio, while the largest rotor separation distance 3m has the smallest tip speed ratio at a fan speed of 1m/s. Also, as the rotor separation decreases the power coefficient (C P ) and the total power increase, which resulted to high energy output of the DRHAWT. This result is valid for the QBlade simulations and the experimental results.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2014 ◽  
Vol 1079-1080 ◽  
pp. 543-546 ◽  
Author(s):  
Zhi Kui Wang ◽  
Yi Bao Chen ◽  
Gwo Chung Tsai

The wind turbines have gained a wide range of applications in Renewable Energy Sources (RES) by virtue of its dominant advantages, and it has achieved almost the state-of-the-art from the engineering point of view. Nevertheless, the starting behavior which plays a prominent role in wind power generation has achieved few studies up to this moment. We conducted this analysis of a micro horizontal axis wind turbine (MHAWT) on its starting behavior to give insight into its start-up torque as well as its start-up speed on an assumption that it is rigid body, and some relative simplification on its structure are adopted meanwhile. The wind turbine's power coefficient CP, tip-speed-ratio l along with torque coefficient CT were taken into consideration and discussed to a large extent in order to having a relative clear cognition of its operational characteristics.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Hani Muhsen ◽  
Wael Al-Kouz ◽  
Waqar Khan

This work aims at designing and optimizing the performance of a small Horizontal-Axis-Wind-Turbine to obtain a power coefficient (CP) higher than 40% at a low wind speed of 5 m/s. Two symmetric in shape airfoils were used to get the final optimized airfoil. The main objective is to optimize the blade parameters that influence the design of the blade since the small turbines are prone to show low performance due to the low Reynolds number as a result of the small size of the rotor and the low wind speed. Therefore, the optimization process will select different airfoils and extract their performance at the design conditions to find the best sections which form the optimal design of the blade. The sections of the blade in the final version mainly consist of two different sections belong to S1210 and S1223 airfoils. The optimization process goes further by investigating the performance of the final design, and it employs the blade element momentum theory to enhance the design. Finally, the rotor-design was obtained, which consists of three blades with a diameter of 4 m, a hub of 20 cm radius, a tip-speed ratio of 6.5 and can obtain about 650 W with a Power coefficient of 0.445 at a wind-speed of 5.5 m/s, reaching a power of 1.18 kW and a power coefficient of 0.40 at a wind-speed of 7 m/s.


2014 ◽  
Vol 651-653 ◽  
pp. 663-667 ◽  
Author(s):  
Jing Ru Chen ◽  
Zhen Zhou Zhao ◽  
Tao Li

The paper analyzes the effect of airfoil thickness, camber and blade pitch angle on the performance of the three-bladed Darrieus wind turbines. The research results show that the increase of airfoil thickness, camber and pitch angle of blade, can improve power coefficient when the wind turbine tip speed ratio between zero and four. The increase of thickness and camber of the airfoil leads to running tip speed ratio range of wind turbine get narrowed, and reduces the power coefficient when wind turbine runs in high tip speed ratio range. When the pitch angle of blade is 1˚, power coefficient reaches the maximum value. Negative pitch angle has a bad impact on power coefficient and even creates negative power coefficients.


2002 ◽  
Vol 26 (2) ◽  
pp. 109-116
Author(s):  
Sadhan Mahapatra ◽  
Subhasis Neogi

This paper is based on the studies made on a numerical model for calculating the turbine characteristics at low tip speed ratio for a Horizontal Axis Wind Turbine. The turbine characteristics are analysed for different configurations over the total operating range i.e. from tip speed ratio of zero to a maximum value where CP becomes zero. The simulation model provides acceptable results, however for the blade position near the hub, a non-convergent situation is observed i.e. the flow parameters converge to values outside those associated with turbine operation. This indicates the possibility of a multisolution.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4025
Author(s):  
Sajid Ali ◽  
Choon-Man Jang

Lift force is an important parameter for the performance evaluation of an H-Darrieus wind turbine. The rotational direction of the streamlined force is effective on the performance of the wind turbine. In order to analyze the flow characteristics around the turbine blades in real-time, a numerical analysis using three-dimensional unsteady Reynold-averaged Navier–Stokes equations has been introduced. Experimental data were obtained from a field test facility constructed on an island in South Korea and was introduced to compare the numerical simulation results with measured data. The optimum tip speed ratio (TSR) was investigated via a multi-variable optimization approach and was determined to be 3.5 for the NACA 0015 blade profile. The turbine displays better performance with the maximum power coefficient at the optimum TSR. It is due to the delay in the flow separation from the blade surface and the relatively lower strength of the tip vortices. Furthermore, the ratio between lift and drag forces is also the highest at the optimum TSR, as most of the aerodynamic force is directly converted into lift force. For one rotation of the turbine blade at the optimum TSR, the first quarter of motion produces the highest lift as the static pressure difference is maximum at the leading edge, which helps to generate maximum lift. At a TSR less than the optimum TSR, small-lift generation is dominant, whereas at a higher TSR, large drag production is observed. Both of these lead to lower performance of the turbine. Apart from the TSR, the optimum wind angle of attack is also investigated, and the results are prepared against each TSR.


Sign in / Sign up

Export Citation Format

Share Document