scholarly journals Influence of Ramped Wall Temperature and Ramped Wall Velocity on Unsteady Magnetohydrodynamic Convective Maxwell Fluid Flow

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 392 ◽  
Author(s):  
Talha Anwar ◽  
Poom Kumam ◽  
Wiboonsak Watthayu ◽  
Asifa

This article provides a comprehensive analysis regarding effects of ramped wall temperature and ramped wall velocity on incompressible time-dependent magnetohydrodynamic flow of Maxwell fluid. The flow is due to free convection and bounded to an infinite vertical plate embedded in porous medium. Solutions of mass, shear stress, and energy fields are computed symmetrically by introducing some suitable non-dimensional parameters along with the Laplace transformation technique. The expression for the Nusselt number is also calculated. A comparison between solutions incorporating isothermal temperature and ramped wall temperature conditions is also executed to examine the profile differences. A graphical study is performed to highlight the influence of parameters on mass flow and energy transfer.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Naveed Khan ◽  
Farhad Ali ◽  
Muhammad Arif ◽  
Zubair Ahmad ◽  
Aamina Aamina ◽  
...  

The aim of this study is to investigate how heat and mass transfer impacts the unsteady incompressible flow of Maxwell fluid. An infinite vertical plate with ramped and isothermal wall temperature and concentration boundary conditions is considered with the Maxwell fluid. Furthermore, in this study, engine oil has been taken as a base fluid due to its enormous applications in modern science and technologies. To see the importance of nanofluids, we have suspended molybdenum disulfide in engine oil base fluid to enhance its heat transfer rate. To investigate the flow regime, the system of equations was derived in the form of partial differential equations. The exact solutions to the complex system are obtained using the Laplace transform technique. Graphically, the impact of different embedded parameters on velocity, temperature, and concentration distributions has been shown. Through using the graphical analysis, we were interested in comparing the velocity, temperature, and concentration profiles for ramped and isothermal wall temperature and concentration. The magnitude of velocity, temperature, and concentration distributions is greater for an isothermal wall and less for a ramped wall, according to our observations. We observed that adding molybdenum disulfide nanoparticles to the engine oil increased the heat transfer up to 12.899%. Finally, the corresponding skin friction, Nusselt number, and Sherwood number have been calculated and presented in a tabular form.


Author(s):  
R. K. Deka ◽  
S. K. Das

The effects of thermal radiation on the MHD flow past an accelerated infinite vertical plate in a rotating fluid, taking Hall effect into account, has been investigated. The solutions are obtained by Laplace transformation technique. Velocity distribution (both axial and transverse) are shown graphically, whereas the numerical values of the axial and transverse components of skin-friction are listed in a table.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
N. Ahmed ◽  
M. Dutta

An exact solution to the problem of a magnetohydrodynamic viscous, incompressible free convective flow of an electrically conducting, Newtonian non-Gray fluid past a suddenly started infinite vertical plate with ramped wall temperature in presence of appreciable radiation heat transfer and uniform transverse magnetic field is presented. The fluid is assumed to be optically thin and the magnetic Reynolds number is considered small enough to neglect the induced hydromagnetic effects. The resulting system of the equations governing the flow is solved by adopting Laplace Transform technique in closed form. Detailed computations of the influence of Hartmann number, radiation conduction parameter Q, Reynolds number Re and time t on the variations in the fluid velocity, fluid temperature, and skin friction and Nusselt number at the plate are demonstrated graphically. The results show that the imposition of the transverse magnetic field retards the fluid motion and causes the viscous drag at the plate to fall. The investigation simulates that the fluid temperature drops and the rate of heat transfer from the plate to the fluid gets increased for increasing Reynolds number.


2014 ◽  
Vol 6 (1) ◽  
pp. 1024-1031
Author(s):  
R R Yadav ◽  
Gulrana Gulrana ◽  
Dilip Kumar Jaiswal

The present paper has been focused mainly towards understanding of the various parameters affecting the transport of conservative solutes in horizontally semi-infinite porous media. A model is presented for simulating one-dimensional transport of solute considering the porous medium to be homogeneous, isotropic and adsorbing nature under the influence of periodic seepage velocity. Initially the porous domain is not solute free. The solute is initially introduced from a sinusoidal point source. The transport equation is solved analytically by using Laplace Transformation Technique. Alternate as an illustration; solutions for the present problem are illustrated by numerical examples and graphs.


2018 ◽  
Vol 387 ◽  
pp. 332-342
Author(s):  
R. Suresh Babu ◽  
B. Rushi Kumar ◽  
Oluwole Daniel Makinde

This article investigates the magnetohydrodynamic mixed convective heat, and mass transfer flow of an incompressible, viscous, Boussinesq, electrically conducting fluid from a vertical plate in a sparsely packed porous medium in the presence of thermal radiation and an nth order homogeneous chemical reaction between the fluid and the diffusing species numerically. In this investigation, the fluid and porous properties like thermal and solutal diffusivity, permeability and porosity are all considered to be vary. The governing non-linear PDE's for the fluid flow are derived and transformed into a system of ODE's using an appropriate similarity transformation. The resultant equations are solved numerically using shooting technique and Runge-Kutta integral scheme with the help of Newton-Raphson algorithm in order to know the characteristics of the fluid for various non-dimensional parameters which are controlling the physical system graphically. The results of the numerical scheme are validated and a numerical comparison has been made with the available literature in the absence of some parameters and found that in good agreement. Nomenclature


Sign in / Sign up

Export Citation Format

Share Document