scholarly journals Maxwell Nanofluid Flow over an Infinite Vertical Plate with Ramped and Isothermal Wall Temperature and Concentration

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Naveed Khan ◽  
Farhad Ali ◽  
Muhammad Arif ◽  
Zubair Ahmad ◽  
Aamina Aamina ◽  
...  

The aim of this study is to investigate how heat and mass transfer impacts the unsteady incompressible flow of Maxwell fluid. An infinite vertical plate with ramped and isothermal wall temperature and concentration boundary conditions is considered with the Maxwell fluid. Furthermore, in this study, engine oil has been taken as a base fluid due to its enormous applications in modern science and technologies. To see the importance of nanofluids, we have suspended molybdenum disulfide in engine oil base fluid to enhance its heat transfer rate. To investigate the flow regime, the system of equations was derived in the form of partial differential equations. The exact solutions to the complex system are obtained using the Laplace transform technique. Graphically, the impact of different embedded parameters on velocity, temperature, and concentration distributions has been shown. Through using the graphical analysis, we were interested in comparing the velocity, temperature, and concentration profiles for ramped and isothermal wall temperature and concentration. The magnitude of velocity, temperature, and concentration distributions is greater for an isothermal wall and less for a ramped wall, according to our observations. We observed that adding molybdenum disulfide nanoparticles to the engine oil increased the heat transfer up to 12.899%. Finally, the corresponding skin friction, Nusselt number, and Sherwood number have been calculated and presented in a tabular form.

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988098 ◽  
Author(s):  
Muhammad Arif ◽  
Farhad Ali ◽  
Nadeem Ahmad Sheikh ◽  
Ilyas Khan

The purpose of this article is to investigate the flow of Maxwell fluid with nanoparticles, that is, molybdenum disulfide and graphene with ramped temperature condition at the boundary, and engine oil is considered as base fluid. Furthermore, molybdenum disulfide and graphene nanoparticles are uniformly distributed in the base fluid. The problem is modeled in terms of partial differential equations with physical initial and boundary conditions. To make the system of governing equations dimensionless, we introduced some suitable non-dimensional variables. The obtained dimensionless system of equations is solved using the Laplace transform technique. From graphical analysis, it can be noticed that the velocity is high with isothermal wall temperature and lower for ramped wall temperature. These solutions are verified by comparing with the well-known published results. In addition, the physics of all parameters of interest is discussed through graphs. The mathematical expressions for skin friction and Nusselt number are mentioned and the obtained results are presented in tabular form. Finally, the effect of molybdenum disulfide and graphene nanoparticles is briefly discussed for the flow and heat profiles for Maxwell nanofluid.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
N. Ahmed ◽  
M. Dutta

An exact solution to the problem of a magnetohydrodynamic viscous, incompressible free convective flow of an electrically conducting, Newtonian non-Gray fluid past a suddenly started infinite vertical plate with ramped wall temperature in presence of appreciable radiation heat transfer and uniform transverse magnetic field is presented. The fluid is assumed to be optically thin and the magnetic Reynolds number is considered small enough to neglect the induced hydromagnetic effects. The resulting system of the equations governing the flow is solved by adopting Laplace Transform technique in closed form. Detailed computations of the influence of Hartmann number, radiation conduction parameter Q, Reynolds number Re and time t on the variations in the fluid velocity, fluid temperature, and skin friction and Nusselt number at the plate are demonstrated graphically. The results show that the imposition of the transverse magnetic field retards the fluid motion and causes the viscous drag at the plate to fall. The investigation simulates that the fluid temperature drops and the rate of heat transfer from the plate to the fluid gets increased for increasing Reynolds number.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 392 ◽  
Author(s):  
Talha Anwar ◽  
Poom Kumam ◽  
Wiboonsak Watthayu ◽  
Asifa

This article provides a comprehensive analysis regarding effects of ramped wall temperature and ramped wall velocity on incompressible time-dependent magnetohydrodynamic flow of Maxwell fluid. The flow is due to free convection and bounded to an infinite vertical plate embedded in porous medium. Solutions of mass, shear stress, and energy fields are computed symmetrically by introducing some suitable non-dimensional parameters along with the Laplace transformation technique. The expression for the Nusselt number is also calculated. A comparison between solutions incorporating isothermal temperature and ramped wall temperature conditions is also executed to examine the profile differences. A graphical study is performed to highlight the influence of parameters on mass flow and energy transfer.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


Sign in / Sign up

Export Citation Format

Share Document